Toward Lifelong Object Segmentation from Change Detection
in Dense RGB-D Maps

Ross Finman!, Thomas Whelan2, Michael Kaess!, and John J. Leonard!

Abstract—In this paper, we present a system for automatically
learning segmentations of objects given changes in dense RGB-D
maps over the lifetime of a robot. Using recent advances in RGB-
D mapping to construct multiple dense maps, we detect changes
between mapped regions from multiple traverses by performing
a 3-D difference of the scenes. Our method takes advantage of
the free space seen in each map to account for variability in
how the maps were created. The resulting changes from the 3-
D difference are our discovered objects, which are then used
to train multiple segmentation algorithms in the original map.
The final objects can then be matched in other maps given their
corresponding features and learned segmentation method. If the
same object is discovered multiple times in different contexts,
the features and segmentation method are refined, incorporating
all instances to better learn objects over time. We verify our
approach with multiple objects in numerous and varying maps.

I. INTRODUCTION

Many of the environments that robots explore have a variety
of different objects that are of interest to either the robot itself
or to a user. As such, the ability to learn and recognize objects
in their current setting is an important task for robotics. Our
goal is to have robots continually go through an environment
and learn about objects automatically given no prior informa-
tion about the world. This is called object discovery. In order
to discover objects, we use the assumption that movement is
inherent to objects, as discussed in Gibson [1], so changes in
maps between successive traverses can suggest new objects.
For example, as a robot explores and maps its world, it should
be able to detect that a book or cup moved and learn how to
find those objects in the future. As the robot sees more changes
over its lifetime, it should be able to automatically build up
and refine representations of objects as they move in the
world. These models can then be used for higher-level object
reasoning, autonomous surveillance, robotic manipulation, or
object querying.

With advances in RGB-D sensors such as the Microsoft
Kinect, it is now possible to cheaply and easily acquire
RGB and depth images. Coupled with algorithmic advances
in temporally scalable and dense mapping [2]-[4], it iS now

1 R. Finman, M. Kaess, and J. J. Leonard are with the Computer Science
and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of
Technology (MIT), Cambridge, MA 02139, USA. rfinman, kaess,
jleonard at csail.mit.edu

2T. Whelan is with the Department of Computer Science, National Univer-
sity of Ireland Maynooth, Co. Kildare, Ireland. thomas. j.whelan at
nuim.ie

This work was partially supported by ONR grants N00014-10-1-0936,
N00014-11-1-0688, and N00014-12-10020 and by a Strategic Research Clus-
ter grant (07/SRC/I1168) by Science Foundation Ireland under the Irish
National Development Plan, the Embark Initiative of the Irish Research
Council.

Fig. 1. Onright: a discovered object (a trash bin) from two separate, partially
overlapping maps (not shown) where one map had the object, while the other
did not. The object was used to automatically tune a segmentation algorithm
to segment other instances of the object in a new, unseen map (on left). The
discovered objects are highlighted in red to show detections.

possible to acquire dense maps in real time. In this work, we
build upon the Kintinuous mapping system by Whelan [4].
Given two Kintinuous maps, we first discover object from
noticing changes in two maps. Then, using the object(s) as
ground truth, we learn a segmentation method to represent
the object(s) by sampling and scoring multiple segmentation
methods with varying parameters. As objects are continually
discovered over time, multiple instances of the same object
are combined and the features and segmentation method are
refined with the new information. The end result over the
lifetime of the robot is a set of discovered and refined objects
paired with respective segmentation methods.

The key contributions of this work are threefold; first, a
system that finds the object differences between two arbitrarily
sized overlapping maps with varying camera trajectories and
noise; second, a object segmentation learning framework that
is independent of any single segmentation method; lastly, a
method for refining segmentations when objects are reobserved
in different contexts. We evaluate our system on multiple
indoor datasets of varying size and complexity, with both
single and multiple object instances.

II. RELATED WORK

There has been extensive previous work on object discovery
in computer vision. A common approach is to find similar
regions of images by comparing either image features or
segmentations [5]-[11]. These regions of similarity are then

grouped into object classes as newly discovered objects. Tuyte-
laars [12] provides a thorough overview of unsupervised object
discovery for 2-D images. Such computer vision approaches
often have previous image specific information and many
are mined from online image databases, thereby indirectly
adding human knowledge of what is relevant for humans.
Additionally, this work is only making use of 2-D information;
our work differs in that it uses richer 3-D information obtained
from long videos of RGB-D frames.

Previous work has also looked at discovering differences in
maps. Biswas [13] and Anguelov [14] both recovered changes
in maps through the process of scene differencing (taking
multiple static maps and performing a symmetric difference
over the common regions to find the changes). Both Biswas
and Anguelov use 2-D occupancy grids to find 2-D objects and
object class templates. Our work is different from these meth-
ods in that we look at 3-D data to discover dense 3-D models
of objects that a robot could recognize or manipulate. In 3-
D, Herbst [15] uses a probabilistic sensor model to robustly
find differences between two static 3-D maps to discover 3-
D models of objects. While solving a similar problem to our
3-D differencing system described in Section III, their work
cannot be quantitatively compared to ours since neither their
implementation nor data are publicly available. From their
results, our system runs two orders of magnitude faster while
processing larger point clouds. Building on their work in [15],
Herbst [16] cluster discovered objects together using spectral
clustering. This is a different, but complementary problem to
ours, and is a suggested addition to this work. Herbst [17]
further advance their work by segmenting objects that have
moved between frames. This work is limited to individual
RGB-D frames and, as such, can only partially model and
segment objects. Mason [18] looks at object disappearance for
object discovery using a sparse visual feature representation
on RGB-D images. Using visual features limits their method
to only handling textured objects, while our method replies
only on the objects having volume. In contrast to our work,
these methods do not extend their systems to learn and refine
object models over the lifetime of the robot.

Recent work by Karpathy [19] uses similar dense 3-D data
for object discovery, focusing on the problem of discovering
objects without any motion priors. While their work shows
impressive results, they use heuristic measures to evaluate the
objectness of a segment while our method avoids such assump-
tions by using changes in the scene to suggest objects. Our
work also differs in that it refines each object’s segmentation
method as new instances of the same object are discovered.

III. 3-D OBJECT DISCOVERY

The input to our 3-D object discovery method is two RGB-
D maps that have some region of overlap where the map may
have changed.

A. RGB-D SLAM

This work is built on the Kintinuous mapping system
developed by Whelan [4], [20] to generate dense 3-D re-

constructions from RGB-D video. Kintinuous is an extension
of the KinectFusion system developed by Newcombe [3].
At their root, Kintinuous and KinectFusion use a volumetric
representation of a scene that can efficiently integrate all
depth measurements on a GPU to achieve real-time dense map
generation. At a high level, KinectFusion maps an area within
a predefined static volumetric cube, and Kintinuous extends
this by moving the cube as the camera moves through the
world. This gives us, in real time, the dense maps needed to
identify objects.

B. Map Alignment

Given two Kintinuous maps (represented as colored point
clouds) we seek to find the changes that occur, and then seg-
ment those changes as objects. We propose using differencing,
which requires us to align the maps well enough to distinguish
the desired objects in the symmetric difference of the two
point cloud maps. Before any changes can be identified by our
system, the first step is to find a rigid transformation between
the two point clouds’ coordinates. To find the transformation,
regions of overlap (RoO) between the two maps are found and
the transformation computed from the RoOs. Automatically
finding the RoO in both maps is outside the scope of this work,
so a bounding cube is manually set. The overlapping region
may be all or part of either map. The suggested overlap is not
exact enough to perform the differencing operation alone, so
the rigid transformation is further refined using the Iterative
Closest Point (ICP) algorithm [21] on the RoO. The error is set
as the Euclidean squared error, and the worst 20% of points
are ignored. This work assumes that any change in the two
maps is a small part of each of RoO so that ICP converges
on the correct rigid transformation. The top images in Fig. 2
show an example of two separate aligned maps. We use the
rigid transformation to align both point cloud maps (not just
the RoO) in the same coordinate frame.

C. Differencing

With the two maps aligned, we now wish to find the changes
between them. With maps A and B in the same coordinate
frame, we do a symmetric difference, or diff, of the two maps.
A diff, Dy, is done by taking the relative complement of A
with respect to B. D, is a subset of map A such that the
following constraint holds for a constant r value:

Doy ={pic Al pj—pill > rVp; € B}.)]

Intuitively, this is all points in A that are not within a radius r
of any points in B. D, is for taking of a diff of A with respect
to B, but being that there is no ordering of the maps given,
an object may have been in A or B depending on whether
an object disappeared or appeared in the second map. One
map will have the observed parts of the objects and the other
will have the region occluded by the object. Ergo, to ensure
that the object model is in our diff, we store the symmetric
difference of A and B. For our experiments, we set r to 2 cm
— approximately twice the volumetric resolution of the map.

Fig. 2. On top: two separate 3-D dense, cluttered, maps aligned using ICP from Section III-B. Bottom left: raw output of the 3-D diff from Section III-C.
Bottom center: filtered diff using a volumetric noise filter - note the artifacts both inside and especially outside the main difference area. Bottom right: final
object (a wire spool) extracted from the freespace filter.

D. Filtering

The raw diff of two maps, as seen in Fig. 2 (showing only
D,p) has two primary issues. First, there are small scattered
points that, due to imperfect alignment and sensor noise, were
not subtracted in the diff. We begin to solve this problem by
clustering the points in the raw diff by assuming an object
is smooth (meaning the object has no surface discontinuities
larger that r), and, using the volumetric resolution of the
points from Kintinuous, estimate the cluster’s volume. Then
we remove all clusters below a volume threshold v;, where v
is set to 27 cm?® (a 3 c¢cm cube).

Second, there are large regions of the scene that, while
within the roughly defined RoO, are different due to how the
camera trajectory moved when building the map (See bottom
center of Fig. 2). For example, when mapping a scene the first
time, the camera sees behind a box, but the second time, the
camera does not. This would, correctly, be labeled as different
between the two maps, but is not the result of an object
appearing or disappearing; what is desired is the differences
that appear in the parts of the map A that were known to be
unoccupied in map B. We call this concept free-space filtering.

The free-space filtering function takes as input the set of
camera poses, the set of cube poses from Kintinuous, the dense
point cloud map, and the volumetric resolution of the map.
First, a voxel grid of the map is created, with the dimensions
being the maximum and minimum (X, y, z) values of the cube
poses, plus the corresponding cube dimensions. For example,
a static 5 m cube would have a pose of (0, 0, 0) and the voxel

dimensions would be from (-2.5, -2.5, -2.5) to (2.5, 2.5, 2.5).
The voxel discretization is set to 5% larger than the volumetric
resolution of the map to account for incorrect indexing edge
cases that result if the voxel and map resolutions were the
same. The voxels take on three values, unseen, occupied, and
free-space, and, as such, can be stored efficiently with two bits.
The map is loaded into the voxel grid where each point in the
map is labeled as occupied and all other points are labeled as
unseen. The algorithm raycasts each pixel from every camera
pose and labels the voxel grid as free-space until either the
voxels are occupied, or the edge of the cube at that camera
pose is detected. An example of the labeling algorithm can be
seen in Fig. 3.

With all the voxels labeled, the diff can be filtered by
looking at what differences in, say, map A, protrude into the
freespace of the aligned map B. Intuitively, this is what objects
are in an area of the map that was otherwise known to be free-
space. If a majority of the points of a cluster within the diff
are in the free-space, then the cluster of points is labeled as an
object. All other clusters are removed, as can be seen in Fig. 2.
The map which the object is in, which can be determined by
whether D,;, or Dy, has the object in it, is also recorded for
future training.

IV. SEGMENTATION LEARNING

In the previous section, we described a method for discov-
ering objects from changes between maps. Here we detail how
to take those discovered objects and learn to correctly segment
those objects in the scene. The traditional unsupervised seg-

\
Y

/ 8 d
ANAVAVANAN

Fig. 3. Example voxel labeling of the freespace raycasting algorithm from
one of many camera poses. The map surface is highlighted in red. The
occupied voxels are colored grey, while the green voxels are labeled as
freespace since there is an unobstructed line from the camera (not shown
to the bottom right) as highlighted with the blue raycast lines. Note: Since
we are raycasting from a camera pose to the fully reconstructed map, there
may be occlusions from the viewing angle that are filled in from a later camera
pose.

mentation problem is an ill-posed problem since there can be
multiple correct segmentations of the same object depending
upon the use cases. Here we look at the problem of how to
segment the recently discovered object. From before, we have
map A and B, and say, from our free-space filter, we detect
A has an object that is not in map B. We use the object point
cloud to train multiple segmentation methods with varying
parameters to segment the known object.

A. Segmentation Methods

The goal of our segmentation method is to be able to
segment the already discovered objects from current and
future maps. While our system runs independently from any
particular segmentation algorithm, for proof of concept, we
used the graph-based segmentation algorithm proposed by
Felzenszwalb and Huttenlocher [22] due to its computational
efficiency. To create the graph, we treat every point in map
A as a node and look at its neighboring nodes (defined by a
radius 7/, set to twice the volumetric resolution of the map)
and create undirected edges between the node points p; and p;
(so if there is an edge e;; there is no ej;). The weight assigned
to each edge is discussed below. The algorithm compares edge
weights to the node thresholds and joins the two nodes of the
edge if the edge weight is below a dynamic threshold. This
threshold for every node is initially set to a global value 7T,
and each threshold grows larger after each joining of nodes
based on a scale parameter k. Specifics of the algorithm and
parameters can be read in the referenced work, but intuitively,
T is roughly set to ensure nodes are initially joined, and k is
positively correlated with the resulting segment size.

Having the graph structure allows the segmentation al-
gorithm to generalize to many different situations. This is
particularly useful since different objects may require different
segmentation methods. A yellow object on a grey table may
be best segmented with color, while a grey object on a grey
table may be best distinguished via surface normals. As such,
we choose to have multiple edge weighting methods. To
demonstrate the concept, we build graphs with both surface

normals and color edge weights independently, though other
edge weights or even segmentation methods may be used.

1) Color edge weights: For color, we use a simple Eu-
clidean distance in RGB space. We choose this over HSV
or HSL because the results varied little in practice and RGB
distance has been used effectively in prior work [22]. The
color weighting value is given below for nodes p; and p;:

Wrgn (P Pj) = \/ (pi, = ;) + iy = Pj,)? + (i —Pj)?
2
2) Normal edge weights: For surface normals, an obvious
solution is to take the dot product of the two normal vec-
tors; however, as demonstrated in Moosmann [23], a positive
convexity bias can provide improved results. Inspired by
Karpathy [19], we say two points, p; and p; are convex if
(pj —pi)-n; > 0 for the respective normals n; and n;. Below
is the weight equation we use for surface normals.

if (pj —pi)-n; >0
otherwise.

(1 —nNn; - nj)2,

(1 —mni-ny),)

Wy (N4, nj) =
The above equation biases the weights of convex parts of the
map to be lower, and thus, more easily joined into a segment,
than the concave regions. Intuitively, this is saying that the
convex parts of a map more likely correspond to objects, while
the concave parts correspond to object boundaries. This takes
advantage of the convex tendencies of many objects.

B. Segmentation Fitting

Given the segmentation method described above, the edge
weighting schemes, and a discovered object, we can now
segment the map containing the object. We treat the discov-
ered object as a training point, and automatically refine our
segmentation parameters to find that object in the map.

1) Scoring: In order to train our segmentation method
correctly, we need a segmentation scoring function to optimize
over. The desired characteristics of the function are that it
gives a higher score for segmentations .S that have a segment
S; that overlap with and only contain the object O. Below is
the scoring function used to evaluate the segmentations:

15|

o] AZZ“”’ @

=0 peSs;

= mazxg,(

score(S, O)

Where S; is a segment within a segmentation .S and I(S;,, O)
being an indicator function that returns 1 if the point p within
segment S; is also a point in O. The sum is the number of
overlapping points in the maximally overlapping segment of
the object. This is weighted by the size of the object as well
as the size of the segment. If the object size is much larger
than the segment overlap, then the score will be lower. If the
segment size is much larger than the object overlap, then the
score will also be lower. This gives a desirable score that has
a maximum value only when a segment fully contains the
object and only the object. This function depends only on the
segmentation output and is independent of the segmentation
method.

Fig. 4. Top: the map used to train segmentation. An object, a recycle bin on
the left side of the each map, was moved between this map, and another (not
shown). Center: the best segmentation using the color segmentation method.
Bottom: the best segmentation using the convexity surface normal segmenta-
tion method. The bottom segmentation is the best fitting segmentation method
overall, and thus the one stored with the object.

2) Optimization: We use the above score from Equation (4)
in our segmentation refining algorithm. For every object O; in
a map M, we segment M using parameter values for 7" and
k uniformly sampled over the parameter space defined by the
edge weights detailed above. This is done for all segmentation
methods Sm. Sampling 100 (T, k) pairs was sufficient for our
experiments. All segment scores of an individual object are
stored in a matrix Score with each 2-D matrix being the scores
from each sampled 7" and k value for a particular S € Sm. Of
these values, the max is chosen to be the associated parameters
that segment the object. Formally, this can be written as:

Param = arg max score(Sm(T, k, M), Oy). (5)
T,k,Sm
Example segmentation outputs can be seen in Fig. 4. It is
of note that we limit the segmentation parameter range for 7'
and k£ to be [0.001, 0.01] and [0, 0.005] respectively since
values outside that range either create single world segments,
or single point segments on our datasets. We sample 5 values
of T across 20 values of k.

3) Object Representation: The object is stored for matching
against based on the corresponding segment’s 3-D geometric
features and segmentation method with corresponding de-
tection parameters. The geometric features of the segment
are based on Principle Component Analysis (PCA) on the
segmented point cloud. The distance along the principle axes

is stored, as well as the standard deviation of the segmented
points along the three axes. The relative curvature between the
three axes is recorded, along with the volume of the points and
the average color. Lastly, we store the number of times this
object has been discovered (initialized to 1) and the Score
matrix.

For every geometric feature, we use each as a distribution
over the range of possible values to probabilistically find
objects in maps. We naively model each feature with a normal
distribution N (u, o) for simplicity with u being the measured
value. Since there is only one data point, we apply a prior
to the variance. Experimentally, a variance o2 of (0.1 x u)?
worked well. In Section IV-D, we detail how the influence of
this prior decreases as more objects are discovered.

C. Object Matching

Using the learned object features, we want to be able to
find all instances of the object in future maps without having
to rediscover the object through changes. The robot loads
the object’s learned segmentation method and parameters to
segment a map. The resulting segments need to be compared to
the learned object. We use the individual feature distributions
Oj, of a learned object O; to compare against the different
feature values S;, of a segment S; in a map. We compute the
probability that a segment S; is the object O; by taking the
product of the probabilities of the individual features, treating
each feature as being independent.

P(Si=0;) = II;,(1=P(Si; #0j,))
(w=nj)? (6)
127 "1‘57;,]'y 202
P(Sif 7é Ojf) - fujff—tsi,j,ff ajf];/ﬁe "odz

Where 6; ;¢ = |uj, — Si,| is the difference of the mean value
for feature f in object O; and the measured value of the
segment feature S; .. The values p;, and o;, are the respective
mean and standard deviation of the distribution over the feature
f for object O;. Intuitively, Equation (6) is the probability
that the observed segment is the learned object. By assuming
independence of the features, we calculate this probability
by taking the product of the probabilities of each individual
feature. We take the complementary probability that a segment
feature is at least the value that was measured and is the object.
Lastly, if P(S; = O;) > 7 for a static threshold 7, we label
the segment as that particular object. In our experiments, we
used a 7 of 0.5.

D. Towards Lifelong Learning

As the robot discovers more objects, it is likely to rediscover
the same object. This means that an object was found in
potentially two different contexts, thus providing more infor-
mation on how to segment the object and avoiding the over
fitting problem from just using a single discovered object. Now
we need to match recently discovered objects through data
association. We manually group discovered objects together
to guarantee the correct convergence for the variance of the

TABLE I
DISCOVERY RATES.

Step | % correct
Differencing | 33%
Volumetric Filtering | 57%
Freespace Filtering | 97%

features, though Herbst [16] shows a segmentation clustering
algorithm for automatically grouping discovered objects.

Suppose object O; is recognized to be the same as object
Oj. We first take the matrices Score; and Score; and then
find the new parameters by using Equation 5 with the weighted
average of the two matrices (weighted by the number of times
each object was observed, n; and n;). This is possible since
we uniformly sample the parameter space so the segmentation
parameters are identical for each value in the score matrices.
Then, for each feature distribution, we update the p and o2
values in Equation 7.

[il LA (]

Hnew = n; +n;
o _ 03y (fnew — i) £)

Nnew = Ny +n;

As the number of observations increases, the effect of the
initial prior on the variance, diminishes and the value o2
will converge on the true variance of the specific feature.
We only combine segmentation parameters this way and not
segmentation methods. If a discovered object is segmented
best with a color segmentation method one time, and a surface
normal method the next, we do not combine the two methods
together. Instead, we take the max score of the two, and use the
corresponding segmentation method and parameters without
combining.

It is important to note that, for computational reasons, we
are not re-segmenting the scene since our current segmentation
method guarantees monotonically increasing segment sizes
with increasing values of the T an k parameters. This means
our scoring function will not have multiple peaks. Other
segmentation methods may require storing the 3-D maps and
recomputing the segment features.

V. RESULTS

We test our algorithm on two datasets. The first dataset, A,
contains 37 maps recorded by a handheld camera containing
five base maps and five maps with one or more objects moved
from the base map. The remaining maps are ones with and
without the moved objects in them. The second dataset, B,
contains 30 maps with objects moved from 3-6 times. The size
of the maps in both datasets range from 200,000 to 2,700,000
points from a combined 32 minutes of camera data. In our
datasets, there are multiple similar objects such as trash bins
and recycle bins, or cups and jars in both simple tabletop and
naturally cluttered environments.

Fig. 5. Top & center: First two maps for alignment. Note the overlapping
regions within the red circles. Bottom: Both aligned maps drawn together
with the filtered difference, a suitcase, highlight in red.

A. Differencing

We evaluate our system by first quantifying the initial object
discovery stage. We do this by comparing the number of
points in the correct, hand labeled difference against the total
number of points in the entire diff at each particular stage. The
results in Table I, showing that 97% of all changed points
in our datasets are correctly labeled as discovered objects.
Qualitatively, this can also be seen in Fig. 2, and a fully aligned
example can be seen in Fig. 5.

B. Segmentation

We evaluate the quality of the segmentation optimization
and object representation in Fig. 6, which are for a trash
bin and stuffed bunny. The precision and recall values were
calculated by varying 7 from Section IV-C. These examples
highlight the differences in performance between a relatively
simple box shaped object and more complex shaped bunny.
The blue lines in each graph correspond to precision and recall
of a single segmentation optimized using only one discovered
object. We go further and show how our system adapts over
time with the green lines in the graphs that are the result
of combining the segmentations of five discovered objects
using the method described in Section IV-D. Interestingly,

Precision

[—One Training Object

—One Traiing Oyect
011 —Fwe Training Objects 02 |—Fwe Traning Objects

o 0z 0 06 [1 o 0z 0 o6 [1
Recall Recall

Fig. 6. Precision Recall curves for two objects, where the blue curve results
from using a single object and green from using five instances of the object
to refine its representation. (Left) Trash bin: As can be seen, the results are
very similar, which suggests that the prior given to the feature representations
closely matches the true prior, as well as objects being that shape and color
are relatively unique and easily represented. (Right) Stuffed bunny: As can be
seen, the results improve as the object is seen multiple times. When compared
to the left graph there is a larger improvement across multiple runs. This is
potentially due to the complex geometry and color of the object that is not
captured from a single view.

TABLE I
TIMING OF SYSTEM COMPONENTS.

Step | Time (s)
Freespace Voxel Labeling | 3.45
Alignment | 0.80
Differencing | 0.18
Filtering | 0.18
Segment Optimization | 27.85
Total | 32.46

the results do not improve any, if at all, from having a
single or five discovered objects for the trash bin. We believe
this is due primarily because of the simple shape, relative
uniqueness, and open surroundings of the trash bins. The prior
assigned to the trash bin was close enough to the true variance
that further examples barely changed the distributions over
features. Looking at Fig. 6. the results greatly improve given
more discovered instances of the bunny. Since the bunny is
not symmetric along an axis and is oddly shaped, our method
benefits from the additional data and positively incorporates
the new measurements for improved matching.

More qualitative results can been seen in Fig. 7. The images
show the wide range of environments our method works in.
From large trash bins in relatively open areas, to smaller jars
in a table top, to a complex stuffed animal in dense clutter.
Also, note the trash bin image in the figure and the identically
shaped recycle bin next to it. Our method is able to distinguish
between the two based on the color difference.

C. Computational Performance

Here we analyze the computation time of our method. Due
to the wide range of map sizes we have in our work, we give
the timing analysis of a typical RGB-D video in our dataset.
Taking two RGB-D videos that have some intersection, one
65 seconds, the other 28 seconds, we process the maps in real
time with Kintinuous at a resolution of 0.78 centimeters. Next,
taking the 1.1 million and 0.21 million vertex point clouds, we
run our system. The timing is shown in Table II.

The object matching method, run on a separate point cloud
of 1.3 million points, runs in 7.63 s. The test platform used
was a standard desktop PC running single-threaded on Ubuntu
12.04 with an Intel Core 17-3960X CPU at 3.30GHz, 16GB

of RAM.

VI. CONCLUSION

We have introduced an object segmentation system that au-
tomatically learns segmentations of objects that have changed
in dense RGB-D maps. We showed how such segmentations
can be improved over the lifetime of a robot as it re-discovers
the same object multiple times. Our method builds on recent
real-time dense RGB-D mapping methods, and runs in real-
time. By looking at the changes in the world from doing a
3-D diff, our system is able to refine and segment previously
discovered objects. By not making prior assumptions about
the world, a robot can learn from its environment as the
environment changes. This functionality can be used in a broad
array of applications such as higher-level object reasoning,
autonomous surveillance, robotic manipulation, and object

querying.
A. Limitations

The system presented can reliably discover changed ob-
jects and segment them in future maps. However, there are
some limitations to our approach. Our method depends on
there being a volumetric difference between two maps, and
aligning them with ICP. If the differences are smaller than the
volumetric resolution of the map (e.g., a paper on a table), or
are within the map resolution defined threshold of the relative
complement, the differences may be indistinguishable between
the two maps. With increased map resolution, smaller objects
would be more easily detected. For large changed objects that
make up enough of the RoO to warp the alignment (e.g., a
sofa, or desk), ICP would not align, and thus, the differencing
would return incorrect objects. Additionally, we assume moved
objects do not overlap with themselves or any other changes;
otherwise our differencing method would incorrectly remove
any overlapping points.

B. Future Work

Future work includes looking at object hierarchies. Say a
tea set is discovered, and separately, a teacup from the set
is moved. The current system would discover those as two
separate objects and not make the connection that the teacup
is a sub-object of the tea set. This could be incorporated with
the metadata framework presented in Collet [24] that encodes
object and domain knowledge. Further work also includes how
to represent discovered objects to optimize for uniqueness in
the context of multiple scenes.

REFERENCES

[1] J. Gibson, The ecological approach to visual perception. Resources
for ecological psychology, Lawrence Erlbaum Associates, Incorporated,
1986.

[2] H. Johannsson, M. Kaess, M. Fallon, and J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on, (Karlsruhe,
Germany), May 2013. To appear.

[3] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in Mixed
and Augmented Reality (ISMAR), 2011 10th IEEE International Sympo-
sium on, pp. 127-136, IEEE, 2011.

Fig. 7.

[4]

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and
J. Leonard, “Kintinuous: Spatially extended KinectFusion,” in 3rd RSS
Workshop on RGB-D: Advanced Reasoning with Depth Cameras, (Syd-
ney, Australia), July 2012.

J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman,
“Discovering objects and their location in images,” in Computer Vision,
2005. ICCV 2005. Tenth IEEE International Conference on, vol. 1,
pp. 370-377, 1IEEE, 2005.

J. Sivic, B. C. Russell, A. Zisserman, W. T. Freeman, and A. A. Efros,
“Unsupervised discovery of visual object class hierarchies,” in Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
pp. 1-8, IEEE, 2008.

H. Arora, N. Loeff, D. A. Forsyth, and N. Ahuja, “Unsupervised
segmentation of objects using efficient learning,” in Computer Vision
and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1—
7, IEEE, 2007.

M. Brown and D. G. Lowe, “Unsupervised 3D object recognition
and reconstruction in unordered datasets,” in 3-D Digital Imaging and
Modeling, 2005. 3DIM 2005. Fifth International Conference on, pp. 56—
63, IEEE, 2005.

G. Kim, C. Faloutsos, and M. Hebert, “Unsupervised modeling of object
categories using link analysis techniques,” in Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1—
8, IEEE, 2008.

N. Payet and S. Todorovic, “From a set of shapes to object discovery,”
in Computer Vision—-ECCV 2010, pp. 57-70, Springer, 2010.

S. Vicente, C. Rother, and V. Kolmogorov, “Object cosegmentation,”
in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pp. 2217-2224, 1EEE, 2011.

T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Buntine, “Un-
supervised object discovery: A comparison,” International Journal of
Computer Vision, vol. 88, no. 2, pp. 284-302, 2010.

R. Biswas, B. Limketkai, S. Sanner, and S. Thrun, “Towards object
mapping in non-stationary environments with mobile robots,” in Intelli-
gent Robots and Systems, 2002. IEEE/RSJ International Conference on,
vol. 1, pp. 1014-1019, IEEE, 2002.

D. Anguelov, R. Biswas, D. Koller, B. Limketkai, and S. Thrun, “Learn-

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

Left column: Objects discovered from changes in previous maps (not shown). Center left column: New maps with the discovered objects in them.
Center right column: Random colored segmented versions of the map using the optimized segmentation method and parameters for each specific object.
Right column: Original map with object segment detected and highlighted in red. From top to bottom, the objects are a jar, a trash bin, and a stuffed bunny
respectively. The detections were automatically trained using from one, two, and four objects for the jar, trash bin, and bunny respectively. Note the trash bin
in the second row map is detected, and not the similarly proportioned by different colored recycle bin next to it.

ing hierarchical object maps of non-stationary environments with mobile

robots,” in Proceedings of the Eighteenth conference on Uncertainty
in artificial intelligence, pp. 10-17, Morgan Kaufmann Publishers Inc.,
2002.

E. Herbst, P. Henry, X. Ren, and D. Fox, “Toward object discovery
and modeling via 3-D scene comparison,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pp. 2623-2629, IEEE,
2011.

E. Herbst, X. Ren, and D. Fox, “RGB-D object discovery via multi-scene
analysis,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pp. 48504856, IEEE, 2011.

E. Herbst, X. Ren, and D. Fox, “Object segmentation from motion with
dense feature matching,” in ICRA Workshop on Semantic Perception,
Mapping and Exploration, 2012.

J. Mason, B. Marthi, and R. Parr, “Object disappearance for object
discovery,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pp. 2836-2843, IEEE, 2012.

A. Karpathy, S. Miller, and L. Fei-Fei, “Object discovery in 3D
scenes via shape analysis,” in International Conference on Robotics and
Automation (ICRA), 2013.

T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. McDonald,
“Robust real-time visual odometry for dense RGB-D mapping,” in /[EEE
Intl. Conf. on Robotics and Automation, ICRA, (Karlsruhe, Germany),
May 2013. To appear.

P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,”
in Robotics-DL tentative, pp. 586—606, International Society for Optics
and Photonics, 1992.

P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, Sept.
2004.

F. Moosmann, O. Pink, and C. Stiller, “Segmentation of 3D lidar data
in non-flat urban environments using a local convexity criterion,” in
Intelligent Vehicles Symposium, 2009 IEEE, pp. 215-220, IEEE, 2009.
A. Collet, B. Xiong, C. Gurau, M. Hebert, and S. Srinivasa, “Exploiting
domain knowledge for object discovery,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2013.

