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Thomas Whelan, Sonja Stüdli, John McDonald, and Richard H. Middleton

Department of Computer Science, NUI Maynooth, Maynooth, Co. Kildare, Ireland
Hamilton Institute, NUI Maynooth, Maynooth, Co. Kildare, Ireland

thomas.j.whelan@nuim.ie,stuedlis@ee.ethz.ch,

johnmcd@cs.nuim.ie,richard.middleton@nuim.ie,

Abstract. The Standard Platform League (SPL) provides an environ-
ment that is essentially static; with the exception of other robots and
the audience, the area in which a robot is expected to localise itself is
quite favourable. However, a large number of the predefined landmarks
in the given world model can be perceived as ambiguous in many sce-
narios, with the prime example being field line markings. In this paper a
technique is presented that implicitly disambiguates these detected field
line objects in order to use them for localization purposes.

1 Introduction

The environment in which a robot in the SPL must localise in is very well de-
fined; pitch dimensions, field markings and landmark objects are fully described
previous to any competition [11]. As a result we are reliably presented with a
constrained environment. While other robots and audience members may intro-
duce some dynamics into the environment, in general it is static and rich in
predefined information.

1.1 Basics of Localization

In order to localise within this fully defined world model, we need only identify
a small number of the known fixed features before we can employ a number
of traditional methods for maintaining robot localization. A typical localization
system used in humanoid robotic soccer would make use of either a Kalman
filter[8] or a Particle filter[12, 4]. Either of these filters use odometry and vi-
sual information to provide an accurate estimate of a robot’s global position.
Speaking in even simpler terms, only two known field landmarks are needed for
triangulation of one’s position. The goal posts are a perfect example of two such
landmarks[1]. However, it is not always possible to maintain two goal posts in
a robot’s field of vision. Either of the filters listed previously are designed to
account for this and aided by reasonable odometry measures can give a moder-
ately accurate estimate of a robot’s position in such scenarios. However, given
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Fig. 1. Given Standard Platform League pitch description in rule book [11]

the relatively fast pace of a robotic soccer game, it is desirable to be accurately
localised at all times.

The remaining known landmarks that exist on the field are the field line
markings. As can be seen in Figure 1 these include a large number of corners (line
intersections) and a centre circle. Considering the number of these landmarks
one would expect to be able to triangulate on a position in the majority of view
points. However, this is where our two main issues arise.

1.2 Computational Load

The first issue, albeit slightly more accessible than the second, is associated with
computational performance. A typical method for the detection of lines in an
image is to perform an operation such as the Hough Transform and extract
lines from Hough Space[3]. Unfortunately this operation is quite expensive and
cannot be realistically used in realtime on the current SPL hardware. A more
basic approach, given the constrained environment, is to scan a given image for
green-white-green transitions in order to detect what may be points on a field
line. Then, clustering can be performed on these detected line points that should
yield line segments within the image. This approach does yield good results,
as shown in Figure 2, but still requires a significant amount of computation.
For example, this technique makes up 50% of the processing time of the vision
component of our SPL system.

1.3 Ambiguity

The second issue associated with field line markings is the ambiguity of cor-
ners and curves. While many heuristics can be applied to attempt to uniquely
identify a detected corner, there are scenarios where it is impossible unless in-
formation about a robot’s currently estimated position is used. This can lead to
a nasty feedback loop - if the estimate is incorrect, a field line landmark may be



Line Point Registration 3

(a) Close lines (0.5 - 1.5m) (b) Far lines (1.5 - 3.0m)

Fig. 2. Results of simple line point and line segment detection on close and far away
field lines.

incorrectly identified which would further the corruption of the current position
estimation. A curve, the centre circle to be specific, is also ambiguous. From as
many as 4 different view points any of these field line landmarks may appear the
same. This presents us with a significant ambiguity problem.

The work presented in this paper provides a solution which removes the need
for the initial stage of line detection and explicit disambiguation. However, it does
make use of the information provided by processing an image containing field
lines. In effect, by combining Cox’s algorithm with a Kalman Filter based system,
the aim is to rapidly and continually use the algorithm to keep close to the best
fit. In other words, disambiguation on our proposed system is a consequence
of continually maintaining an estimate of the range of possible robot locations.
From this range of possible locations, Cox’s algorithm is used to enhance the
accuracy of estimation, and thereby narrow the range of possibilities.

2 Background

The process of matching detected points to a predefined map of line segments
was first detailed by Cox in 1991 [2]. A robotic system was described that used a
laser scanner to detect points on solid objects in the surrounding. These detected
points were then subsequently matched in a local search fashion to an a priori
map of the environment, producing an estimated pose. Cox treated the prob-
lem as least-squares linear regression with an analytical solution, successfully
demonstrating that this technique was both accurate and practical.

Lauer et al. described a similar algorithm in 2006 for robots in the RoboCup
Midsize league using points detected on field lines instead of laser points [7].
They introduced an alternative error function for minimisation that was more
robust to outliers when compared to the squared error function. Noisy distance
estimates were cited as the motivation behind this. They also introduced gradient
descent as an alternative optimisation method in place of the least-squares linear
regression used by Cox, due to the form of their new error function. This evoked
a requirement to calculate the gradient for translation and orientation at each
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position before descending towards a minimum. RPROP was then used to solve
the minimisation task [10]. Also in line with Cox’s original suggestion, they used
a simplified application of the Kalman filter in the form of a stochastic weighted
averaging approach for smoothing of the estimated pose.

In 2010, Rath implemented an adaptation of the algorithm for use on a Nao
robot in the SPL [9]. This adaptation included most of the methods used by
Lauer et al. but due to the hardware constraints of the Nao some small changes
were introduced. The most significant modification was the pre-calculation of
gradients with respect to the translation for a 5 × 5cm grid. The motivation
behind this was to reduce computational load, the result being that only the
gradient for the orientation would need to be calculated at run time.

In 2009, Inam [4] presented a related method where a Particle filter could
be used in conjunction with an image database. The matching technique de-
scribed by Inam, unlike the previous examples, functions in image space rather
than world space and uses correlation in place of an optimisation. It therefore
uses substantially more computational power than required for the algorithm
presented here.

2.1 Cox’s Algorithm

Given a set of detected line points in an image, the basic process of Cox’s algo-
rithm involves 3 main steps, as outlined by both Cox and Rath; This description
is taken mainly from [9].

2.1.1 Line point transformation from image to world coordinates
Transformation from image coordinates to world coordinates is achieved using
typical back projection associated with the extrinsic and intrinsic camera pa-
rameters. In this regard the camera location based on the geometry of the robot
and the current joint sensor readings.

2.1.2 Selecting the closest line for each point This is carried out for
each transformed line point by calculating the shortest Euclidean distance from
each line segment in the world model to the point, and selecting the one with
the shortest distance.

2.1.3 Finding a correction for the current pose In this final step, a
correction to the current robot pose, described by lt = (x, y, θ)> where x and y
describe the estimate of the robot’s global position and θ describes the estimated
orientation of the robot, is calculated. We wish to calculate b = (∆x,∆y,∆θ)>

such that a new estimate, l′t = lt +b, gives a pose which better matches observed
line points to field line markings.

The aim of Cox’s Algorithm is to minimise the squared distances associated
with each point to its closest line segment that we calculated in 2.1.2. To achieve
this, the problem is linearised into a least-squares linear regression problem and
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each line segment is treated as an infinite line with orthogonal unit vector ui =
(uix, uiy)> and offset ri such that ui · zi = ri holds for all arbitrary points zi on
the line.

Let the ith transformed line point be zi = (zix, ziy)> and the current position
of the robot be c = (ltx, lty)>. The transformation of each line point zi can be
described as:

t(b)(zi) =

(
cos∆θ − sin∆θ
sin∆θ cos∆θ

)
(zi − c) + c+

(
∆x
∆y

)
(1)

Cox suggests that the correction angle ∆θ should be sufficiently small such that
we can approximate the transformation to:

t(b)(zi) ≈
(

1 −∆θ
∆θ 1

)
(zi − c) + c+

(
∆x
∆y

)
(2)

Next, the squared distance of each line point zi can be found as:

d2i = (t(b)(zi)
>ui − ri)2 ≈ ((xi1, xi2, xi3))b− yi)2 (3)

Where:

xi1 = uix (4)

xi2 = uiy (5)

xi3 = u>i

(
0 −1
1 0

)
(zi − c) (6)

yi = ri − zixuix − ziyuiy (7)

Now we can calculate the sum of squared distances for all points zi:

E(b) =
∑
i

((xi1, xi2, xi3))b− yi)2 = (Xb− Y )>(Xb− Y ) (8)

Where:

X =

x11 x12 x13...
...

...
xn1 xn2 xn3

 Y =

y1...
yn

 (9)

The correction b̂ that minimises E(b) can then be solved by:

b̂ = (X>X)−1X>Y (10)

And finally a new pose is given by:

l′t = lt + b (11)
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3 Extensions to the Algorithm

Lauer et al. described a method for matching detected field line points to a
global map of curves that overcame the two main shortcomings of Cox’s original
method. (i) The restriction to straight lines, and (ii) the lack of robustness
against distance measure outliers. In 2010, Rath described an adaptation to the
method introduced by Lauer et al. that functioned on a smaller, less powerful
system - Aldebaran’s Nao. However, this adaptation was not without a cost; it
required the pre-calculation of the gradients for translations. This resulted in
what was effectively a drastically down-sampled representation of all possible
translation gradients, from an almost continuous (limited only by computation
precision) 6 × 4m area, to a discrete 120 × 80 size area, with each component
of the area measuring 5 × 5cm. The hardware used by Lauer et al. contained a
1GHz CPU, which was more than adequate for evaluating gradients for all three
components of the optimisation online. However implementing this full online
gradient computation on Nao hardware is impractical, which justifies Rath’s
pre-calculated gradient look up table.

Here we present a set of adaptations to Cox’s original algorithm that solve
both the non-straight line and distance measurement error limitations without
the need for gradient calculation or significant offline computation or quantiza-
tion, while still maintaining reasonable performance for online execution onboard
an Aldebaran Nao. Given the relatively small size of the SPL pitch, it is desirable
to maintain as high a precision as possible when estimating a robot’s pose.

3.1 Voronoi Diagram

In his paper [2] Cox suggests the use of a Voronoi diagram to simplify the deter-
mination of the closest line to a given point, but did not implement one himself.
Lauer et al. do not mention any preprocessing done to speed up the determi-
nation of closest lines and in the approach taken by Rath, the pre-calculated
gradient look up table essentially removes the need for a Voronoi diagram.

On-the-fly calculation of the closest field marking feature taking a naive brute
force approach is O

(
m
)
, where m is the number of features. Pre-calculation of

the closest line at each point in the form of a Voronoi diagram provides a look-up
of O

(
1
)
, a much more desirable complexity. According to the description of the

field markings described in the SPL rule book [11], we pre-calculate a Voronoi
diagram of precision 1 × 1cm for the entire pitch, as shown in Figure 3.

Then, the closest line to the transformed line points as described in Section
2.1.1 can be found in a look-up table.

3.2 Inclusion of All Field Markings

The mathematics described by Cox only supports straight line segments as part
of the optimisation process. While straight line segments do make up 88.5% of
the white field marking area on the SPL pitch there is a lot of useful information
in the penalty spots and the centre circle, as shown in Figure 1.
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Fig. 3. Voronoi diagram for field markings.

3.2.1 Inclusion of Points In order to include penalty spots in Cox’s original
algorithm we must devise a method to include single points. Points can be in-
cluded by modifying the entries made for Equations 4 through 7 in Section 2.1.3
in matrices X and Y :

(
xi,1 xi,2 xi,3
xi+1,1 xi+1,2 xi+1,3

)
=

(
1 0
0 1

(
0 −1
1 0

)(
c− zi

))
(12)(

yi1
yi2

)
=

(
six − zix
siy − ziy

)
(13)

Where si = (six, siy)> describes the coordinates of the point, or penalty spot,
in world coordinates.

3.2.2 Inclusion of Circles In order to include circular curves or the centre
circle in particular, similar modifications are required for Equations 4 through 7
in Section 2.1.3. Namely, to include line points on a circle with radius R:

ri = R ui =
1√

z2ix + z2iy

(
zix
ziy

)
(14)

3.3 Accounting for Distance Outliers

Lauer et al. and Rath used a normalising distance error function for minimising,
said to be more robust to distance outliers than the squared error function of
Cox’s approach. In order to introduce some tolerance for such errors we added a
weighting to each detected line point based on its relative distance. The weight
for line point i is defined as:
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Wi =
1

d2 + η
(15)

Where W is a diagonal matrix, d is the relative distance to the point and η
is some small offset value.

Another concern for Cox’s approach is the issue of singularity occurring dur-
ing the pseudo inversion, particularly when no line intersections are visible. This
is accounted for by adding some small value ζ in the form of a diagonal matrix
before carrying out the inversion. The final modified version of Equation 10 is
then:

b̂ = (X>WX + ζI)−1X>WY (16)

4 Kalman Filter Integration

To stabilise the pose estimate given by the modified version of Cox’s algorithm
the output is smoothed with a specialised Kalman Filter. The unscented trans-
form [13, 5] is used, so that the uncertainty of the robot’s position estimate is
taken into account for the initial pose estimate given by the modified algorithm.
Then from the output of the modified algorithm we compute an estimate of the
position of the robot and an associated covariance matrix. Afterwards a normal
Kalman filtering approach can be applied.

The unscented transform uses a set of points called sigma-points χi and
associated weights wi to represent a probability distribution; in our case the
pose estimation. The sigma-points and their weights have to fulfill the following
characteristics:

1. The weights must sum to unity.

⇒
∑n

i=0 wi = 1

2. The weighted sum must be the mean value of the distribution.

⇒
∑n

i=0 wiχi = xk|k−1

3. The weighted square error sum must be equal to the covariance of the dis-
tribution.

⇒
∑n

i=0 wi(χi − xk|k−1)(χi − xk|k−1)T = Pk|k−1 .

There are various selections of sigma-points which fulfill these characteristics.
For this implementation a symmetric sigma-point set similar to that of Julier
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and Uhlmann [5] is chosen with:

χ0 = xk|k−1

w0 =
1

nx + 1

χi = xk|k−1 +
1

γ

√
nx + 1(pk|k−1)(i)

wi = γ
1

2(1 + γ)(nx + 1)

χi+nx
= xk|k−1 −

1

γ

√
nx + 1(pk|k−1)(i)

wi+nx
= γ

1

2(1 + γ)(nx + 1)

χi+2nx = xk|k−1 + γ
√
nx + 1(pk|k−1)(i)

wi+2nx =
1

2(1 + γ)(nx + 1)

χi+3nx
= xk|k−1 − γ

√
nx + 1(pk|k−1)(i)

wi+3nx =
1

2(1 + γ)(nx + 1)
.

The modified version of Cox’s algorithm is then applied at each sigma-point,
delivering a representation of the distribution of the measurement data. This
means that the algorithm is executed thirteen times; once for each sigma-point.
In addition to an estimated position of the robot Υi, the modified algorithm also
computes a goodness of fit between the detected line points and their closest
lines ξi. These measures are used to modify the weights of the sigma-points,
according to:

ŵi =
wi

ξ2i
. (17)

As the weights must sum up to one, they are normalized after modification.
Then these new sigma-points are used to calculate the measurement:

yk =

n∑
i=0

ŵiΥi (18)

and its square root of the covariance matrix, where HT denotes the Householder
Triangularization:

Rk = HT
([√

ŵ0(Υ0 − yk), . . . ,
√
ŵn(Υn − yk), r0

])
. (19)
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These two values are then used for a measurement update of a Kalman filter-
ing approach. In our case a Covariance Intersection as described by Julier and
Uhlmann [6] is used.

5 Results

5.1 Localization System Tests

To fully test the system, the performance of various localization algorithms are
compared in moderately realistic game scenarios. The localization algorithms
compared are as follows:

– UKF: The Unscented Kalman Filter algorithm used by the RoboEireann
team in the 2010 Competition.

– Particle Filter: A basic particle filter, with 100 particles, implemented for
testing purposes.

– CI (line detection): A Covariance Intersection alternate to the UKF based
on standard vision measurement data, that is, using post measurements,
corner points, T points, centre circle etc.

– CI (Cox’s algorithm): A Covariance Intersection algorithm, using goal
post measurements and integrated with Cox’s algorithm as described in Sec-
tion 4.

For each of the localization systems, tests were conducted in four different
scenarios. In each of these, there is a start location and orientation and a des-
tination location and orientation. Once the robot reaches its final location, the
error in this location was manually recorded. (The coordinate frame is a standard
Cartesian system with origin at the centre of the pitch, x-axis directly towards
the centre of the yellow goal). The scenarios are described in the Table 5.1.

Starting Position Destination
Scenario x(m) y(m) θ(◦) x(m) y(m) θ(◦)

1 0.0 -2.0 135 -1.2 0.0 180
2 -2.4 -1.1 0 -0.7 0.7 0

3 0.0 2.0 -135 -2.8 0.0 0
4 0.0 0.0 0.0 -1.0 1.0 -135

Table 1. Scenarios used for localization tests.

The first scenario denotes a situation where an attacker must move from
the sideline, to a point facing the goal at the penalty spot. The second scenario
describes a situation where a robot in the back corner of the pitch must move up
to the opposite side of the field, just before the half way line. The third scenario
describes a goal keeper moving to position and the fourth is where a robot on
the center circle, must turn around, and move to an attacking position slightly
to one side of the pitch.
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To minimize variability due to changing lighting conditions, the vision system
camera calibration was adjusted between each set of trials. The results presented
in Figure 4 give data from 5 repetitions of a test in each scenario.

30
40
50
60
70
80
90

100

UKF

Particle Filter

CI ( line detection)

CI ( Cox's algorithm)

0
10
20
30
40
50
60
70
80
90

100

x (cm) y (cm) (°)

UKF

Particle Filter

CI ( line detection)

CI ( Cox's algorithm)

(a) Scenario 1

30
40
50
60
70
80
90

100

UKF

Particle Filter

CI ( line detection)

CI ( Cox's algorithm)

0
10
20
30
40
50
60
70
80
90

100

x (cm) y (cm) (°)

UKF

Particle Filter

CI ( line detection)

CI ( Cox's algorithm)

(b) Scenario 2

30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

UKF

Particle Filter

CI ( line detection)

CI ( Cox's algorithm)

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

x (cm) y (cm) (°)

UKF

Particle Filter

CI ( line detection)

CI ( Cox's algorithm)

(c) Scenario 3

30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

UKF

Particle Filter

CI ( line detection)

CI ( Cox's algorithm)

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

x (cm) y (cm) (°)

UKF

Particle Filter

CI ( line detection)

CI ( Cox's algorithm)

(d) Scenario 4

Fig. 4. Localization error results for tests in four different scenarios. For each scenario
5 tests are conducted, and statistics on the errors are computed. The error bars in the
figures indicate standard error distance, and the vertical scale is either cm or degrees.

The implementation chosen for the inclusion of the modified version of Cox’s
algorithm in the Kalman filter took an iterative approach. Given the size of the
pitch and the prevalence of local minima it was decided that each execution of the
algorithm would be capped in translation and rotation, reducing the potential
for overstepping a local minimum valley in the error minimisation space. This
approach turned out to be quite computationally intense, taking between 8 and
30ms per frame, due to the necessity for multiple iterations at each of the 13
sigma-points.

6 Conclusion

In this paper we have considered a number of extensions to a line point registra-
tion based algorithm, Cox’s algorithm, for utilizing field markings in localization.
A number of modifications to the basic algorithm have been examined. These in-
clude: (i) use of a Voronoi diagram to reduce computational load in determining
the nearest field mark; (ii) extension of the basic algorithm to include all types
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of field markings (lines, circles and points); (iii) distance based outlier detection;
(iv) weighted least square cost minimization; and, (v) integration with unscented
Kalman Filter based localization.

The performance of the algorithm achieved so far is similar to or better
than any of the other algorithms tested. It also shows promise for further de-
velopments, such as modification to learn robot pose from the data. There is
also potential in the future to use the algorithm in a non-iterative fashion and
more cleverly chose integration points with the Kalman filter, solving any costly
computation issues. It would also be interesting to see if the algorithm can be
integrated with particle filter approaches, though generally, the algorithm itself
is too expensive to be run once for each particle.
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