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Abstract

Dense RGB-D SLAM techniques and high-fidelity LIDAR scanners are examples from an abundant set of systems capable of
providing multi-million point datasets. These datasets quickly become difficult to process due to the sheer volume of data, typically
containing significant redundant information, such as the representation of planar surfaces with millions of points. In order to
exploit the richness of information provided by dense methods in real-time robotics, techniques are required to reduce the inherent
redundancy of the data. In this paper we present a method for incremental planar segmentation of a gradually expanding point
cloud map and a method for efficient triangulation and texturing of planar surface segments. Experimental results show that our
incremental segmentation method is capable of running in real-time while producing a segmentation faithful to what would be
achieved using a batch segmentation method. Our results also show that the proposed planar simplification and triangulation
algorithm removes more than 90% of the input planar points, leading to a triangulation with only 10% of the original quantity
of triangles per planar segment. Additionally, our texture generation algorithm preserves all colour information contained within
planar segments, resulting in a visually appealing and geometrically accurate simplified representation.

Keywords: planar simplification, point clouds, mapping, plane segmentation, triangulation, incremental

1. Introduction

The generation of 3D models of real-world environments is
of significant interest in many applied fields including profes-
sional civil engineering, environment-based game design, 3D
printing and robotics. Industrial Light Detection And Ranging
(LIDAR) platforms and extended scale RGB-D mapping sys-
tems can output dense high-quality point clouds, spanning large
areas that contain millions of points [2, 3]. Key issues with such
large-scale multi-million point datasets include difficulties in
processing the data within reasonable time and a high memory
requirement. In addition to this, some features of real-world
maps, such as walls and floors, end up being over-represented
by thousands of points when they could be more efficiently and
intelligently represented with geometric primitives. In particu-
lar the use of geometric primitives to represent a large 3D map
to localise against has been demonstrated as a feasible means
of real-time robot localisation [4]. In this paper, we examine
the problem of planar surface simplification in large-scale point
clouds with a focus on quality and computational efficiency in
both online incremental and offline batch settings.
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Figure 1: Scene triangulation showing a simplified mesh for planar
segments with non-planar features highlighted.

2. Related Work

Existing triangulation algorithms perform poorly in remov-
ing redundancy in dense point clouds, or are not suited to the
kind of data typically acquired with common robotic sensors.
In addition to this, to the best of our knowledge there is no
known efficient solution to incrementally grow planar segments
extracted from dense point cloud data in a gradually expanding
map. In this paper we address these problems with three main
contributions improving on the work of [5]. Firstly we present
a computationally efficient method for incrementally growing
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existing planar segments in a dense point cloud map, which
produces segmentations extremely close to those that would
be achieved using a batch segmentation. Secondly we present
an accurate and robust algorithm for planar segment decima-
tion and triangulation. In comparison to the existing QuadTree-
Based (QTB) algorithm [5], our algorithm guarantees geomet-
ric accuracy during simplification with fewer triangles, without
duplicate points, artificial holes or overlapping faces. Thirdly
we present a method to automatically generate textures for the
simplified planar mesh based on dense coloured vertices. Our
experimental results show that the presented solutions are ef-
ficient in processing large datasets, either incrementally online
or in batch through the use of a multi-threaded parallel archi-
tecture.

In the literature triangular meshing of 3D point clouds is a
well-studied problem with many existing solutions. One class
of triangulation algorithms computes a mathematical model pri-
or to triangulation to ensure a smooth mesh while being robust
to noise [6, 7]. This type of algorithm assumes surfaces are
continuous without holes, which is usually not the case in open
scene scans or maps acquired with typical robotic sensors. An-
other class of algorithms connects points directly, mostly be-
ing optimized for high-quality point clouds with low noise and
uniform density. While these algorithms retain fine details in
objects [8, 9], they are again less applicable to noisy datasets
captured with an RGB-D or LIDAR sensor, where occlusions
create large discontinuities.

With real-world environment triangulation in mind, the Gr-
eedy Projection Triangulation (GPT) algorithm has been devel-
oped [10, 11]. The algorithm creates triangles in an incremental
mesh-growing approach, yielding fast and accurate triangula-
tions. However, the GPT algorithm keeps all available points
to preserve geometry, which is not always necessary for point
clouds containing surfaces that are easily characterised by geo-
metric primitives. To solve this problem a hybrid triangulation
method was developed in [5], where point clouds are segmented
into planar and non-planar regions for separate triangulation.
The QTB algorithm was developed to decimate planar segments
prior to triangulation. The QTB algorithm significantly reduces
the amount of redundant points, although a number of limita-
tions degrade its performance. For example, the algorithm does
not guarantee that final planar points will lie inside the original
planar region, which can lead to noticeable shape distortion.
The algorithm also produces duplicate vertices, overlapping tri-
angles and artificial holes along the boundary.

There is a vast amount of literature on planar segmenta-
tion available. Oehler et al. adopt a multi-resolution approach
that relies on using a Hough transform over co-planar clusters
of surfels, ultimately relying on RANSAC for the plane fitting
component [12]. Deschaud and Goulette use a region growing
approach made robust to noise by growing in a voxel space over
the input data rather than the raw points themselves [13]. Some
algorithms extend 2D graph cut theory towards 3D point cloud
data [14, 15, 16]. These algorithms are designed for general ob-
ject segmentation and their complexity is in general too high for
plane detection, unlike the low-complexity algorithm proposed
by Rabbani et al. [17], which imposes a smoothness constraint
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Figure 2: Parallel system architecture to process point clouds of large-
scale open scene scans or maps. Here texturing is in brackets as it is
an optional step.

on segmentation (discussed later in Section 4). However, like in
previous work ([5]) these methods are all concerned with batch
processing scenarios rather than the incremental segmentation
growing scenario.

In the remainder of this paper we give an overview of our
system followed by individual sections detailing batch planar
segmentation, incremental planar segmentation, triangulation
of planar segments and texture generation. Following this we
provide results evaluating both the qualitative and quantitative
performance of each of the presented techniques.

3. System Overview

3.1. Building Blocks

Our batch system architecture is shown in Figure 2. It takes
a point cloud as input and generates a triangular mesh as output.
If the input is a coloured point cloud, the output can also be a
textured 3D model. The processing pipeline consists of three
main blocks.

Plane Detection segments the input point cloud into pla-
nar and non-planar regions to enable separate triangulation and
parallel processing. This design is especially beneficial for real-
world environments, where multiple independent planar surfa-
ces occur frequently. In our system we apply a local curvature-
based region growing algorithm for plane segmentation, which
was shown to out perform RANSAC-based approaches [5]. In
the interest of completeness we include a description of this
algorithm in Section 4. In the incremental scenario, the plane
detection block continuously runs and only provides planar seg-
ments to be triangulated when they are marked as finalised (as
detailed in Section 5).

Non-Planar Segment Triangulation generates a triangular
mesh for non-planar segments using the GPT algorithm [11].
Given a coloured point cloud, we preserve the colour infor-
mation for each vertex in the output mesh. Dense triangular
meshes with coloured vertices can be rendered (with Phong in-
terpolation) to appear similar to textured models. Additionally,
as opposed to using textures, maintaining colour in vertices of
non-planar segments provides easier access to appearance in-
formation for point cloud based object recognition systems.

Planar Segment Triangulation triangulates planar segments
and textures the mesh afterwards, if given a coloured point cl-
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oud. In our system we improve the decimation algorithm in [5]
and further develop a more accurate and robust solution for tri-
angulation. A detailed description of our algorithm is provided
in Section 6. Our method for planar segment texture generation
is described in Section 7.

3.2. Computationally Efficient Architecture

To improve computational performance, a multi-threaded
architecture is adopted, exploiting the common availability of
multi-core CPUs in modern hardware. We apply a coarse-grain-
ed parallelization strategy, following the Single Program Mul-
tiple Data (SPMD) model [18]. Parallel triangulation of planar
segments is easily accomplished by dividing the set of segments
into subsets that are distributed across a pool of threads. For
maximum throughput of the entire pipeline, segmentation and
triangulation overlap in execution. With an n-core CPU, a sin-
gle thread is used for segmentation and the remaining n − 1
threads are used for triangulation, each with a queue of planar
segments to be processed. Upon segmentation of a new planar
region, the segmentation thread checks all triangulation threads
and assigns the latest segment to the thread with the lowest
number of points to be processed. This strategy ensures an even
task distribution among all threads. When plane segmentation
is finished, the segmentation thread begins the non-planar trian-
gulation in parallel to the other triangulation threads.

4. Planar Segmentation

In this section we review the curvature-based algorithm us-
ed to segment multiple planes from a large 3D point cloud.

4.1. Curvature-Based Segmentation Algorithm

Planes are characterized by their perfect flatness and can be
described as sets of points that have zero curvature. In practice,
open scene point cloud data can be quite noisy and points be-
longing to planes do not have a curvature of exactly zero. How-
ever, the curvature of points lying on planes is still low enough
to distinguish them from points belonging to non-planar sur-
faces. This observation motivates the functionality of our algo-
rithm, which is partially developed from the work of Rabbani
et al. [17].

The curvature-based algorithm consists of an iterative pro-
cess. Firstly, the normal of the next plane to be segmented is
chosen. This is done by finding the point with the lowest cur-
vature from the set of remaining unsegmented points. From
here a region growing process begins using the lowest curva-
ture point as the first seed point. In each iteration the k-nearest
neighbours of the current seed point are determined and their
normals are compared to the estimated plane normal. A neigh-
bouring point is added to the current segment if its normal does
not deviate from the plane normal beyond an angle threshold. A
qualified neighbour is also used as a new seed point for further
region growing if its curvature is sufficiently small. When no
more points can be added to the current segment, a plane is con-
sidered to be fully segmented. Afterwards, the whole process
restarts with the remaining set of unsegmented points, until the

entire cloud has been processed. The pseudocode of the algo-
rithm is listed in Algorithm 1.

Algorithm 1: Curvature-Based Plane Segmentation.

Input: 3D point cloud made of points pi ∈ R3 with normals
ni and curvatures ci
θth angle threshold
cth curvature threshold

Output: Set of planar segments
while points remain unsegmented or the queue is not empty do

if the queue is empty then
pick a seed point ps with the lowest curvature
set the plane normal np to be the normal of ps

else
pop out a seed point ps from the queue

mark ps as segmented
compute the k-nearest neighbours of ps
foreach unsegmented neighbour pi do

if arccos (np,ni) < θth then
add pi to the current segment, mark pi segmented
if ci < cth then

add pi to the queue

if the queue is empty then
output the current segment as a plane

There are two major differences between this algorithm and
the algorithm of Rabbani et al. [17]. The first difference is the
integration of new points into the current segment. The original
algorithm always updates the normal used for the integration
of new points from the current seed point which may introduce
points belonging to areas of moderate curvature in extracted
segments. In this algorithm, we fix the plane normal to the nor-
mal of the first seed point and use only this normal throughout
the segmentation of a single plane. Given that the first seed
point has the lowest curvature available, its normal can be as-
sumed to be a good estimation for the normal of the entire pla-
nar segment. With this modification we avoid the detection of
smoothly-connected shapes, such as spheres and cylinder-like
structures.

The second modification is concerned with the estimation
of point curvature. The algorithm of Rabbani et al. [17] uses
the residual of a least-squares plane fit as a substitute for cur-
vature. In this algorithm we directly estimate the curvature us-
ing the original points. A necessary preprocessing step for this
algorithm is normal estimation for point clouds. This is ac-
complished by local Principal Component Analysis (PCA) [19].
The PCA method for normal estimation also provides the cur-
vature quantity using the following equation [20]

c =
λ0

λ0 + λ1 + λ2
, λ0 ≤ λ1 ≤ λ2, (1)

where λ0, λ1 and λ2 are the eigenvalues from the PCA pro-
cess. These eigenvalues λ0, λ1 and λ2 indicate the smallest,
medium and largest variation along the directions specified by
their corresponding eigenvectors. For points belonging to an
ideal plane, we have λ0 = 0 and hence c = 0. In the presence
of noise, variable c becomes larger than zero.
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This curvature-based algorithm works with two parameters.
The first parameter θth specifies the maximum angle between
the estimated plane normal and the normal of a potential point
on the plane. Typically a 10◦ angle works well for noisy point
clouds. The second parameter cth is the curvature threshold,
which is used to verify whether a point should be designated as
a seed point for region growing. Empirically this threshold is
set to a value below 0.1. Increasing the angle threshold allows
planar extraction in noisier point clouds, while increasing the
curvature threshold adds tolerance for surfaces which gradually
become less planar.

5. Incremental Planar Segmentation

In this section we describe our method for incrementally
segmenting planes from a point cloud map which is being in-
crementally produced in real-time by a dense mapping system,
e.g. Kintinuous [3]. Our method involves maintaining a pool of
unsegmented points which are either segmented as new planes,
added to existing planes or deemed to not belong to any pla-
nar segment. Firstly we define a distance-based plane merg-
ing method that determines whether or not to merge two planar
segments based on the distance between the points in each seg-
ment. We list this as Algorithm 2 and henceforth refer to it as
the mergeP lanes method. In our experiments we use a dis-
tance threshold dth of 0.08m.

Algorithm 2: Method for merging two planar segments.
Input: A planar segment with normal An, point cloud AC and

timestep At

B planar segment with normal Bn and point cloud BC
BH concave hull of B
dth distance threshold

Output: True or False if segments were merged or not
foreach point hi in BH do

if ∃ACk s.t. ‖hi −ACk‖2 < dth then
An ← (An|AC |+ Bn|BC |)/(|AC |+ |BC |)
At ← 0
append BC to AC
compute kd-tree of AC
return True

return False

5.1. Segment Growing
Assuming the input to our system is a small part of a larger

point cloud map that is being built up over time we must de-
fine a method for growing existing planar segments that were
found in our map in the previous timestep of data acquisition.
We maintain a persistent pool of unsegmented pointsM where
each pointMi ∈ R3 and also contains a timestep valueMit ,
initially set to zero. When a new set of points are added to
the map, they are added to the set M, which is then sorted
by the curvature of each point. A batch segmentation ofM is
then performed (as described in Section 4), producing a set of
newly segmented planes N . From here we perform Algorithm
3, which will grow any existing segments and also populate the

set S, that maintains a list of pairs of planes which are similar in
orientation but not close in space. Algorithm 4 lists the method
for merging similar planes that eventually grow close enough
in space to be merged together. In our experiments we use a
normal merge threshold nth of 15◦, a timestep threshold tth of
7 and a timestep distance threshold tdth of 3.75m.

Algorithm 3: Method for growing planar segments.
Input: N set of new planar segments with normalsNin , point

cloudsNiC and timestepsNit

Q set of existing planar segments with normalsQin ,
point cloudsQiC and timestepsQit

Ct current position of sensor producing the map
nth normal merge threshold
tth timestep threshold
tdth timestep distance threshold

Output: S set of pairs of similar but non-merged segments
foreach newly segmented planeNi do
R← ∅
gotP lane← False
foreach existing planeQi do

if ¬Qifinalised and arccos (Nin ,Qin) < nth then
compute concave hullH ofNi

gotP lane← mergeP lanes(Qi,Ni,H)
if gotP lane then

break
else

addQi toR

if ¬gotP lane then
compute kd-tree ofNiC

Nit ← 0
addNi toQ
foreach similar planeRi do

add (Ni,Ri) tuple to S

remove all pointsNiC fromM
foreach existing planeQi do
Qit ← Qit + 1
ifQit > tth and ∀q ∈ QiC , ‖Ct − q‖2 > tdth then
Qifinalised ← True

foreach pair of similar planes Si do
if Si1finalised or Si2finalised then

delete Si

Each time new data is added to the map Algorithms 3 and
4 are run, after which the timesteps values of all remaining un-
segmented points in M are incremented by 1. Points with a
timestep value above tth are removed from the point pool and
marked as non-planar. Algorithm 3 will add new segments to
the map, grow recently changed segments and ensure that sim-
ilar planes which have the potential to grow into each other are
kept track of. By including both spatial and temporal thresholds
it ensures that the process scales well over time and space. Al-
gorithm 4 merges segments which may not have initially been
close together in space but have grown near to each other over
time. Figure 3 shows an example of the incremental planar seg-
mentation process in action.
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(a) (b) (c) (d)

Figure 3: Incremental planar segmentation shown with point cloud, camera position (in green), camera trajectory (in pink) shown above and
resulting planar segments below. From left to right: (a) initially there are four segments extracted from the point cloud; (b) as the camera moves
and more points are provided, the three segments on the left are grown (as described in Algorithm 3); (c) the upper-right most segment grows
large enough to be merged with the small segment on the right (as in Algorithm 4); (d) once the camera has moved far enough away from the two
upper segments they are finalised.

Algorithm 4: Merging segments that have grown closer.
Input: S set of pairs of similar but non-merged segments with

point clouds SiC and alpha values Siα
Q set of existing planar segments

foreach pair of similar planes Si do
gotP lane← False
if |Si1C | > |Si2C | then

swap Si1andSi2
if ¬(Si1α == |Si1C |) then

compute concave hull Si1H of Si1
Si1α ← |Si1C |

gotP lane← mergeP lanes(Si2 ,Si1 ,Si1H)
if gotP lane then

foreach existing planeQi do
ifQi == Si1 then

deleteQi

break

foreach pair of similar planes Sj do
if i == j then

continue
if Sj1 == Si1 then
Sj1 ← Si2

else if Sj2 == Si1 then
Sj2 ← Si2

if Sj1 == Sj2 then
delete Sj

delete Si

Figure 4: Undesirable planar triangulation: the left GPT mesh over-
represents the shape while the right boundary-based Delaunay triangu-
lation produces unnatural skinny triangles.

6. Triangulation of Planar Segments

In this section, our algorithm for planar segment decima-
tion and triangulation is described. A simplified mesh of a
planar segment is generated by removing redundant points that
fall within the boundary of the segment. In the following text
the input planar segment is denoted as P , made up of points
p ∈ R3. With coloured point clouds, each point p also contains
(R,G,B) colour components.

6.1. QuadTree-Based Decimation

Planar segments have a simple shape which can be well
described by points on the boundary of the segment. Interior
points only add redundancy to the surface representation and
complicate the triangulation results. Figure 4 shows an exam-
ple of this where the planar segment is over-represented with
thousands of triangles generated with the GPT algorithm using
all planar points. However, a naı̈ve solution that removes all
interior points and triangulates only with boundary points nor-
mally leads to skinny triangles (which can result in precision is-
sues when performing computations on the mesh), again shown
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(a) (b) (c) (d) (e) (f)

Figure 5: Planar decimation and triangulation (boundary and interior points are dark blue and teal, respectively), from left to right: (a) initialize
by subdividing the quadtree bounding box; (b) classify nodes into interior (teal), boundary (dark blue) and exterior (black); (c) merge interior
nodes; (d) generate vertices; (e) point-based triangulation; (f) polygon-based triangulation.

in Figure 4. With these observations in mind, the quadtree
proves to be a useful structure to decimate the interior points
of a segment while preserving all boundary points for shape re-
covery [5].

6.1.1. Preprocessing
To prepare a planar segment for decimation it is first de-

noised and aligned to the x-y axes. We employ PCA over the
planar segment to compute a least-squares plane fit as well as
an affine transformation T for x-y axes alignment, after which
all points belonging to the segment are orthogonally projected
onto the axis aligned best fit plane. The aligned planar segment
is denoted as Pt. Afterwards, the boundary points of Pt are
extracted as an α-shape [21, 22]. We denote the boundary as a
concave hull H of the planar segment, which is an ordered list
of vertices describing a polygon for which ∀p ∈ Pt and p /∈ H,
p is inside the polygon.

6.1.2. Decimation
Planar segment point decimation consists of four steps as

shown in Figure 5. Firstly, a quadtree is constructed by sub-
dividing the bounding box of Pt into a uniform grid of small
cells. Typically the 2D bounding box is non-square, in which
case the smallest side is extended to equalize the width and
height. The resulting bounding box b is composed of a min-
imum point bmin and a maximum point bmax, with a dimen-
sion s = bmax − bmin. Secondly, the quadtree nodes are clas-
sified as either interior, boundary or exterior. An interior node
is fully contained within the polygonH, while an exterior node
is fully outside. All others are boundary nodes, which intersect
H. Thirdly, the interior nodes of the quadtree are merged to
create nodes of variable size, typically largest around the center
and becoming increasingly fine-grained when approaching the
boundary. When a parent node contains only interior children,
the four child nodes are merged into one. The merged node is
then also classified as interior, allowing further recursive merg-
ing with its siblings. Finally, the corner points of the remaining
interior nodes are extracted as the new internal vertices I of Pt,
while all boundary pointsH are preserved.

6.2. Triangulation

We provide two methods for triangulation of a simplified
planar segment: 1) a low-complexity Point-Based Triangula-
tion and 2) an alternative Polygon-Based Triangulation. Both
methods make use of the Constrained Delaunay Triangulation
(CDT) [23].

6.2.1. Point-Based Triangulation
The point-based approach is a low-complexity triangulation

method, where CDT is directly applied to the decimated seg-
ment. The ordered boundary vertices H serve as constraining
edges and the inner vertices I are used as input points. An ex-
ample output is shown in Figure 5. Point-based triangulation
has all of the advantages of Delaunay triangulation but does
produce more triangles than the polygon-based approach de-
scribed next.

6.2.2. Polygon-Based Triangulation
The regular grid pattern of the inner vertices I immedi-

ately lends itself to a simple triangulation strategy, where two
right-angled triangles are created over each interior node of
the merged quadtree. To complete the triangulation, the space
between the interior right-angled triangles and the boundary
points H is triangulated using CDT. Two sets of constraining
edges are input to the CDT, one being H and the other being a
rectilinear isothetic polygon that bounds interior triangles. This
two-step triangulation is similar to the QTB algorithm of [5].
However, a major difference lies in how the boundary points are
connected. With our CDT-based approach, we avoid overlap-
ping triangles and artificial holes that would normally be pro-
duced by the QTB algorithm.

Efficient computation of the polygon which exactly bounds
the interior vertices I is non-trivial, since the interior nodes
provide only sparse spatial information for geometric opera-
tions. We invoke a solution that maps the interior vertices onto
a binary image, where the bounding polygon can be easily ex-
tracted using a greedy nearest-neighbour tracing algorithm nor-
mally used in image processing [24].

The binary image is represented by an n × n array, where
n = 2d+1 + 1 and d is the quadtree depth. This provides a 2D
grid large enough to represent the empty space between the two
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Figure 6: Degree grid of the upper planar segment in Figure 5 (0-
valued cells hidden). The underlined bold values are the degrees of the
inner vertices I.

vertices of any edge. To project a vertex v ∈ I onto the array,
a mapping function f : R3 → N2 is defined by

f(v) =
n(v − bmin)

s
, (2)

where b is the bounding box and s is its dimension. The divi-
sion is performed on an element-by-element basis. Given that I
is aligned to the x-y axes, function f effectively maps from R2

to N2. We associate two elements with each array cell: a refer-
ence to the mapped vertex (effectively implementing f−1) and
a degree value to quantify vertex connectivity in the underlying
quadtree. Initially, the degree is zero for all cells. During the
triangulation of I, the degree grid is populated. When a vertex
is extracted from the merged quadtree, the reference of the cor-
responding cell is updated and its degree is increased by 1. This
policy alone cannot fully recover the degree of a given vertex,
since only the two ends of an edge are obtained from quadtree
vertices. To overcome this problem, all cells between the two
ends of an edge also have their degree increased by 2. Figure 6
shows a part of the degree grid of the planar segment in Fig-
ure 5. If we consider the interior triangulation to be a graph, the
2D degree grid resolves the degree of each vertex. All non-zero
cells are treated as “1-valued” foreground pixels and the rest as
“0-valued” background pixels in the binary image representa-
tion.

7. Texture Generation

In this section we present our texture generation algorithm
for planar segments using dense coloured point clouds. Due
to the significant loss of coloured vertices during decimation,
the appearance of a simplified planar segment is greatly dimin-
ished. We therefore generate textures prior to decimation for
the purpose of texture mapping the simplified planar mesh.

We generate textures by projecting the vertex colours of the
dense planar segment onto a 2D RGB texture E(x, y) ∈ N3. We
define a texture resolution d as some resolution factor r times
s, where s assumes the size of the bounding box b. In our
experiments a value of r = 100 provides good-quality textures.
The resolution factor can also be automatically computed based
on point cloud density. Each pixel a ∈ E is first mapped to a

(a) (b)

Figure 7: Texture generation, from left to right: (a) plane segment
from a coloured point cloud; (b) generated texture.

3D point v by a mapping function g : N2 → R3, defined as

g(a) =
as

d
+ bmin, (3)

with an element-by-element calculation. Since Pt is aligned to
the x-y axes, the function g effectively maps to R2. A coloured
point corresponding to v in Pt is found by a nearest neigh-
bour search using a kd-tree. We have chosen this approach
as it produces good-quality textures while being computation-
ally inexpensive. However, it can be easily extended to produce
even higher-quality textures by averaging a number of k-nearest
neighbours. Algorithm 5 describes the texture generation pro-
cess. Figure 7 shows an input planar segment and the output
texture.

Algorithm 5: Vertex colour to texture.
Input: Pt set of transformed input vertices

H concave hull of Pt

Output: E 2D RGB texture
foreach pixel p in E do

v← g(p)
if v is insideH then

n← nearest-neighbour of v in Pt

p← (nR,nG,nB)

else
p← (0, 0, 0)

When texture mapping the final planar mesh, the uv texture
coordinates U for the verticesO of each face are computed with
the inverse function g−1 : R3 → N2, derived from Equation (3)
as

g−1(v) =
d(v − bmin)

s
. (4)

With x-y axes aligned points, g−1 is actually mapping from R2.
Algorithm 6 describes the uv-coordinates computation. The list
U guarantees a 1-to-1 mapping to the set O.

Any objects lying on a planar segment are completely ex-
cluded from the texture and not projected onto the plane. In
fact, the generated texture implicitly provides the Voronoi dia-
gram of the face of the object lying on any plane, which in turn
provides position and orientation information of any object ly-
ing on a segmented plane, as shown in Figure 8.

7



Algorithm 6: uv texture coordinate calculation.
Input: O set of final face vertices
Output: U uv texture coordinates for O
foreach vertex v in O do

a← g−1(v)
u← ax

dx

v ← 1.0− ay
dy

Add (u, v) to U

(a) (b)

Figure 8: Implicit object information from texture generation, from
left to right: (a) input coloured point cloud; (b) generated texture with
implicit Voronoi diagrams and locations of objects resting on the plane
highlighted.

8. Evaluation and Results

In this section we evaluate our work with a series of experi-
ments. We ran our C++ implementation on Ubuntu Linux 12.04
with an Intel Core i7-3930K CPU at 3.20 GHz with 16 GB of
RAM. Four coloured point clouds of real-world environments
were used in the experiments, as shown in Figure 9a. These
datasets encompass a wide variation in the number of points,
planar segments and their geometry. All four datasets have been
acquired with an implementation of the Kintinuous dense RGB-
D mapping system [3]. In all experiments we use the same
thresholds in each algorithm, which we initially chose with pre-
liminary experiments to provide visually and geometrically ac-
curate results. We base a number of our comparison metrics on
those originally provided by Ma et al. [5]. We list a number of
statistics on the datasets in Table 1

8.1. Incremental Segmentation Performance
To evaluate the performance of the incremental segmenta-

tion process listed in Section 5 we compare the batch segmenta-
tions to the incremental segmentations of the four datasets both
qualitatively and quantitatively. We use the open source softwa-
re CloudCompare (http://www.danielgm.net/cc/) to

Table 1: Statistics on each of the evaluated datasets. Frame rates were
subject to slight variation in practice.

Dataset 1 2 3 4

Area (m) 7×23×23 5×5×7 4×4×20 11×9×10
Capture time (s) 48 96 58 217
Frame rate (Hz) 30 30 15 15
Points per frame 619 430 3218 1729

Table 2: Incremental versus batch planar segmentation statistics. All
values shown are in metres, on the distances between all vertices in the
incrementally segmented model and the nearest triangles in the batch
segmented model.

Dataset 1 (m) 2 (m) 3 (m) 4 (m)

Mean 0.020 0.038 0.111 0.028
Median 0.015 0.004 0.015 0.010

Std. 0.021 0.108 0.251 0.065
Min 0.000 0.000 0.000 0.000
Max 0.157 0.823 1.389 0.719

align the batch and incremental models of each dataset together
to compute statistics. We quantify the quality of the incremen-
tal segmentation versus the batch segmentation by using the
“cloud/mesh” distance metric provided by CloudCompare. The
process involves densely sampling the batch planar model mesh
to create a point cloud model which the incremental model is
finely aligned to using Iterative Closest Point, an algorithm used
to align two point clouds. Then, for each vertex in the incre-
mental planar model, the closest triangle in the batch model
is located and the perpendicular distance between the vertex
and closest triangle is recorded. Five standard statistics are
computed over the distances for all vertices in the incremen-
tal model: Mean, Median, Standard Deviation, Min and Max.
These are listed for all four datasets in Table 2.

Figure 10 shows heatmap renderings of the “cloud/mesh”
error of each incremental segmentation compared to the batch
segmentation. Notably in each dataset there are a number of
highlighted green planes, these are planes which were not de-
tected in the incremental segmentation model but exist in the
batch segmentation. In general the incremental segmentation
occasionally fails to segment small planar segments whereas
the batch segmentation always finds all planes that match the
criterion set out in Algorithm 1. Additionally, as the incremen-
tally grown planes use a moving average for the planar segment
normal, some planes may have a slightly different orientation
when compared to the batch model. This is evident in partic-
ular in Figure 10 (a) and (c). Taking this qualitative informa-
tion into account as well as the statistics in Table 2 we find
that the incremental segmentation algorithm produces segmen-
tations extremely close to what would be achieved using the
batch process and is suitable to use in a real-time system that
must generate and use the planar model online.

8.2. Triangulation Performance
To assess the triangulation performance, qualitative and qu-

antitative evaluations are presented. A comparison of the tri-
angulation algorithms is shown in Figure 9, where Figures 9b
and 9c show highlighted point-based and polygon-based trian-
gulations, respectively. Additionally we present fly-throughs
in a video submission available at http://www.youtube.
com/watch?v=uF-I-xF3Rk0. It can be seen that both al-
gorithms produce a highly simplified triangulation, while pre-
serving the principal geometry of the planar segments. The
video also shows combined triangulations of all four datasets
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(a) Four dense coloured point cloud datasets used for evaluation, numbered 1, 2, 3 and 4 from left to right.

(b) Point-based triangulation, with planar and non-planar meshes highlighted in blue and orange, respectively.

(c) Polygon-based triangulation with planar and non-planar meshes highlighted in blue and orange, respectively.

(d) Textured simplified planar segments from each dataset.

(e) Complete 3D model with our proposed system.

Figure 9: Four evaluated datasets (numbered from 1 to 4 from left to right) with various triangulation and texturing results.
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(a) (b) (c) (d)

Figure 10: Heat maps based on the distances between all vertices in the incrementally segmented model and the nearest triangles in the batch
segmented model for all four datasets. Colour coding is relative to the error obtained where blue is zero and tends towards green and red as the
error increases. This figure is best viewed in full colour. All values shown are in metres.

Figure 11: Triangulation quality measured with a normalised his-
togram of the angle distribution of planar meshes.

which use our polygon-based approach for planar segments in
combination with the GPT mesh generated from non-planar
segments.

Further assessment of mesh quality is done by measuring
the angle distribution across meshes. A naı̈ve simplified planar
mesh is set as a baseline, which applies Delaunay triangulation
to only the boundary points of a planar segment. The normal-
ized distribution is shown in Figure 11, collected from the 400
planar segments of the four datasets. Taking this Figure into
account along with the qualitative results shown in Figures 3
(d) and 5 (f) we can infer that approximately 80% of the trian-
gles from the polygon-based triangulation are isosceles right-
angle triangles, resulting from the quadtree-based triangulation.
With point-based triangulation, the angles spread over 30◦-90◦,
whereas the naı̈ve boundary-based triangulation shows an even
more random distribution. Defining a skinny triangle as one
with a minimum angle <15◦, the percentages of skinny trian-
gles with boundary-based, point-based and polygon-based tri-
angulation are 28%, 10% and 10%, respectively.

The effectiveness of planar segment decimation is also eval-
uated. Table 3 shows the point count for planar point deci-
mation. Approximately 90% of the redundant points are re-
moved with our algorithm, which is 15% more than the QTB
algorithm, despite the fact that both algorithms are based on a
quadtree. Part of this reduction gain comes from our triangu-

Table 3: Planar point reduction with our decimation algorithm in com-
parison to the QTB algorithm.

Dataset 1 2 3 4

Total points 890,207 1,094,910 2,799,744 5,641,599
Planar points 540,230 708,653 1,303,012 2,430,743

QTB decimation 105,663 303,348 189,772 457,678
Our decimation 47,457 84,711 43,257 76,624

Table 4: Planar mesh simplification with our triangulation algorithms
measured with triangle counts, in comparison to GPT and the QTB
algorithm.

Dataset 1 2 3 4

GPT 1,020,241 1,350,004 2,293,599 4,665,067

QTB 90,087 288,833 182,648 433,953
Point-based 85,653 161,270 79,988 143,396

Polygon-based 76,367 130,642 66,413 118,275

lation methods, which add no extra points once decimation is
completed, unlike the QTB algorithm. In Table 4, the mesh
simplification statistics with triangle counts are also given. We
take the triangle count of GPT for non-decimated planar seg-
ments as the baseline. In accordance with the point count re-
duction, both of our algorithms require no more than 10% of
the amount of triangles of a non-decimated triangulation, and
both perform better than the QTB algorithm.

8.3. Texture Generation Performance

In Figures 7 and 9d, generated textures are shown. The out-
put textures incorporate almost all visual information contained
in the original dense point cloud, enabling a photo realistic and
aesthetically-pleasing textured 3D model.

8.4. Computational Performance

Lastly, we evaluate the computational efficiency of our al-
gorithms. We firstly evaluate the incremental method for planar
segmentation followed by the parallel system used for large-
scale batch data processing.
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Figure 12: Graph comparing cumulative log file time (real world time)
versus the time the incremental segmentation method spends process-
ing data on dataset 2. Also shown is the size of the unsegmented point
pool over time (linearly scaled).

8.4.1. Incremental Performance
In contrast to the results presented in Section 8.4.2 which

include the full pipeline from batch planar segmentation to tri-
angulation, we only evaluate the performance of the incremen-
tal planar segmentation algorithm listed in Section 5 here. We
analyse the online performance of the algorithm as a compo-
nent of the Kintinuous dense mapping system [3]. In this set-
ting, small point cloud slices of the environment being mapping
are provided to the incremental segmentation method gradually
over time as the camera moves through the area. Figure 12
shows a plot of the cumulative log file time (real world time)
versus the time spent incrementally growing planes with the
process described in Section 5. It can be seen that through-
out the mapping process the incremental segmentation method
is processing the data it is provided with faster than it is be-
ing produced, meaning that real-time online operation is being
achieved. Also shown is a linearly scaled line representing the
size of the unsegmented point pool over time. The relationship
between this line and the segmentation time is immediately evi-
dent in how the cumulative processing time of the segmentation
method increases when the number of unsegmented points in-
creases. Similarly, the total processing time ceases to increase
as the number of unsegmented points tends to zero.

In Figure 13 the relationship between the number of non-
finalised planes, the number of unsegmented points and the ex-
ecution time of the segmentation method is visualised. It can be
seen that as the number of unsegmented points becomes large
the execution time increases quite a lot. However for a fixed
number of unsegmented points, in particular above 6 × 104,
an increased number of non-finalised planes improves perfor-
mance. This suggests that growing and merging existing planes
is computationally cheaper than adding an entirely new plane.
The peak around 4 × 104 unsegmented points came from an
early on influx of many new points to the map. Along with
the observation of apparent plateauing of cumulative process-

Figure 13: Heat map rendering showing the relationship between the
number of unsegmented points, the number of non-finalised planes and
the execution time of the incremental segmentation method. The white
dots represent the samples used to generate the map (using linear in-
terpolation).

ing timing in Figure 12 we can conclude that the number of
unsegmented points introduced to the segmentation method at
any one time influences computational performance the most. If
too many are introduced, for example if the density of the input
point cloud is too high or the mapping system is producing data
too quickly, real-time performance may be hindered. However
this can easily by remedied by downsampling the data provided
to the segmentation algorithm.

8.4.2. Batch Performance
With batch processing the baseline for performance com-

parison is standard serial processing with the GPT and QTB
algorithms. Table 5 shows the execution times. The point-
based and polygon-based triangulations are approximately of
the same speed, both 2 to 3 times faster than the GPT and
QTB algorithms. The results also show that the texture gen-
eration algorithm is fast in execution, processing multi-million
point datasets in less than 2 seconds. Examining the bottom
half of Table 5, it is clear that the parallel system architecture
has a profound effect on the overall performance. The execu-
tion time decreases with an increasing number of triangulation
threads. An effect of diminishing returns becomes apparent as
the number of triangulation threads increases, due to the over-
head associated with the parallel implementation. However, as
the per-thread workload increases, such as inclusion of texture
generation, the overhead of parallelization becomes amortised.
Other aspects of particular datasets affect the performance gains
achieved with parallelisation. In particular, in dataset 1 the
abundance of small thin planes appears to have a significant
effect on performance, where going from three to five threads
results in slightly worse performance, again attributed to the
overhead associated with starting new threads for small planes
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Table 5: Efficiency of triangulation and the parallel architecture, mea-
sured in seconds. The 1:x ratio denotes 1 segmentation thread with x
triangulation threads.

Dataset 1 2 3 4

Number of planar segments 101 116 66 117

Serial GPT 18.6 24.3 44.2 91.1
Serial QTB 16.7 18.7 38.3 73.1

Serial point-based 6.9 9.8 17.7 40.2
Serial polygon-based 6.9 9.5 17.8 40.0

Serial polygon-based (texture) 8.3 10.0 20.3 41.4

1:1 Polygon-based 6.4 8.1 15.1 33.8
1:1 Polygon-based (texture) 7.6 8.5 17.4 35.2

1:3 Polygon-based 3.6 4.2 8.3 19.2
1:3 Polygon-based (texture) 4.4 4.1 9.2 19.6

1:5 Polygon-based 3.7 3.5 7.9 16.1
1:5 Polygon-based (texture) 4.7 3.5 8.7 16.2

which do not perform processing for very long.
Both point-based and polygon-based triangulation yield ac-

curate and computationally efficient planar segment triangula-
tions with significant point and triangle count reductions, both
exceeding the performance of the QTB algorithm. The point-
based approach is of low complexity and maintains good trian-
gular mesh properties that are desirable for lighting and com-
puter graphics operations. The polygon-based approach yields
higher point and triangle count reductions with a more regu-
larized mesh pattern, capturing information about the scene in
the form of principal geometric features, such as the princi-
pal orientation of a planar segment. While the polygon-based
method produces less triangles, it does generate T-joints in the
mesh. Such features are detrimental when employing Gouraud
shading and other lighting techniques to render a mesh with
coloured vertices. The polygon-based and point-based methods
offer a trade-off depending on the desired number of triangles
or the intended use of the final triangulation. With robot nav-
igation in mind, the low polygon-count models achieved with
our system are suitable for use in a primitives-based localiza-
tion system, such as the KMCL system of Fallon et al. [4].

The gaps between planar and non-planar triangulations are
apparent. The gap can also be closed by including the bound-
ary vertices of the segmented planes into the non-planar seg-
ment GPT triangulation, as shown in Figure 14. The num-
ber of boundary vertices can be increased with a smaller al-
pha value when computing the concave hull of each segment or
by linearly interpolating between boundary vertices. Extra ver-
tices can also be extracted from the vertex degree grid used in
polygon-based triangulation. In our system we chose to leave
these gaps open, as this separation gives an easier visual under-
standing of any map, implicitly providing a separation between
structural features (like walls, table tops) and “object” features,
useful in automatic scene understanding, manipulation and sur-
face classification.

Figure 14: Joining of GPT mesh with planar segment triangulations.
Left shows unjoined segments and right shows segments joined with
interpolated boundary vertices.

9. Conclusions

In this paper we have studied the problem of the incremental
segmentation and triangulation of planar segments from dense
point clouds with a focus on quality and efficiency. Three sig-
nificant contributions are made. Firstly, we have introduced
a computationally feasible and strong performing method for
the incremental segmentation of planar segments in a gradu-
ally expanding point cloud map. Our method is suitable for
real-time online operation and produces segmentations faithful
to those achieved in a batch processed scenario. Secondly, we
have made a strong improvement on planar segment decima-
tion and triangulation. Both of the presented point-based and
polygon-based triangulation methods produce a more accurate,
simpler and robust planar triangulation than the existing QTB
algorithm, while including the ability to join up planar triangu-
lations with the dense non-planar triangulation. With these two
algorithms approximately 90% of input planar points are re-
moved, and the planar segments are triangulated with no more
than 10% of the amount of triangles required without decima-
tion. Thirdly, we have developed a computationally inexpen-
sive algorithm to automatically generate high-quality textures
for planar segments based on coloured point clouds. The re-
sults show that our system provides a computationally manage-
able map representation for real-world environment maps and
also generates a visually appealing textured model in a format
useful for real-time robotic systems.
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