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Abstract

We present a novel approach to real-time dense visual SLAM. Our system is capable of capturing comprehensive dense glob-

ally consistent surfel-based maps of room scale environments and beyond explored using an RGB-D camera in an incremental

online fashion, without pose graph optimisation or any post-processing steps. This is accomplished by using dense frame-to-

model camera tracking and windowed surfel-based fusion coupled with frequent model refinement through non-rigid surface

deformations. Our approach applies local model-to-model surface loop closure optimisations as often as possible to stay close

to the mode of the map distribution, while utilising global loop closure to recover from arbitrary drift and maintain global con-

sistency. In the spirit of improving map quality as well as tracking accuracy and robustness, we furthermore explore a novel

approach to real-time discrete light source detection. This technique is capable of detecting numerous light sources in indoor

environments in real-time as a user handheld camera explores the scene. Absolutely no prior information about the scene or

number of light sources is required. By making a small set of simple assumptions about the appearance properties of the scene

our method can incrementally estimate both the quantity and location of multiple light sources in the environment in an online

fashion. Our results demonstrate that our technique functions well in many different environments and lighting configurations.

We show that this enables (a) more realistic augmented reality (AR) rendering; (b) a richer understanding of the scene beyond

pure geometry and; (c) more accurate and robust photometric tracking.

Keywords: surfel fusion, camera pose estimation, dense methods, large scale, real-time, RGB-D, SLAM, GPU, light

sources, reflections, specular

1 Introduction

In dense 3D SLAM, a space is mapped by fusing the data

from a moving sensor into a representation of the continuous

surfaces it contains, permitting accurate viewpoint-invariant

localisation as well as offering the potential for detailed se-

mantic scene understanding. However, existing dense SLAM

methods suitable for incremental, real-time operation strug-

gle when the sensor makes movements which are both of

extended duration and often criss-cross loop back on them-

selves. Such a trajectory is typical if a non-expert person with

a handheld depth camera were to scan in a room with a loopy

“painting” motion; or would also be characteristic of a robot

aiming to explore and densely map an unknown environment.

SLAM algorithms have too often targeted one of two ex-

tremes; (i) either extremely loopy motion in a very small area

(e.g. MonoSLAM by Davison et al. (2007) or KinectFusion

from Newcombe et al. (2011a)) or (ii) “corridor-like” motion

on much larger scales but with fewer loop closures (e.g. the
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work of McDonald et al. (2013) or Whelan et al. (2015a)). In

sparse feature-based SLAM, it is well understood that loopy

local motion can be dealt with either via joint probabilistic

filtering (Davison (2003)), or in-the-loop joint optimisation

of poses and features (bundle adjustment) (Klein and Mur-

ray (2007)); and that large scale loop closures can be dealt

with via partitioning of the map into local maps or keyframes

and applying pose graph optimisation (Konolige and Agrawal

(2008)). In fact, even in sparse feature-based SLAM there

have been relatively few attempts to deal with motion which

is both extended and extremely loopy, such as the work on

double window optimisation by Strasdat et al. (2011).

With a dense vision frontend, the number of points matched

and measured at each sensor frame is much higher than

in feature-based systems (typically hundreds of thousands).

This makes joint filtering or bundle adjustment local optimi-

sation computationally infeasible. Instead, dense frontends

have relied on alternation and effectively per-surface-element-

independent filtering by holding the camera pose fixed dur-

ing the mapping step (Newcombe et al. (2011a); Keller et al.

(2013)), which has proven to be a highly efficient technique

capable of running in real-time even on resource constrained

mobile devices Kahler et al. (2015). It has been observed in

the aforementioned dense SLAM systems that the enormous

weight of the input data serves to overpower the approxima-

tions to joint filtering which per-surface-element-independent

filtering assumes. This also raises the question as to whether



Figure 1: Comprehensive scan of an office containing over 4.5 million surfels captured in real-time.

it is optimal to attach a dense frontend to a sparse pose

graph structure like its feature-based visual SLAM counter-

part. Pose graph optimisation focuses on optimising the cam-

era trajectory, leaving it unclear how to simultaneously mod-

ify the map in a consistent manner, i.e. actually improving its

accuracy at all levels of scale.

Some examples of recent real-time dense visual SLAM sys-

tems that utilise pose graphs include that of Whelan et al.

(2015a) which parameterises a non-rigid surface deformation

with an optimised pose graph to perform occasional loop clo-

sures in corridor-like trajectories. This approach is known to

scale well but perform poorly given locally loopy trajectories

while being unable to re-use revisited areas of the map. The

DVO SLAM system of Kerl et al. (2013) applies keyframe-

based pose graph optimisation principles to a dense track-

ing frontend but performs no explicit map reconstruction and

functions off of raw keyframes alone. The work from Meil-

land and Comport (2013) on unified keyframes utilises fused

predicted 2.5D keyframes of mapped environments while em-

ploying pose graph optimisation to close large loops and align

keyframes, although not creating an explicit continuous 3D

surface. MRSMap by Stückler and Behnke (2014) registers

octree encoded surfel maps together for pose estimation. Af-

ter pose graph optimisation the final map is created by merg-

ing key surfel views.

In our system we wish to move away from the focus on

pose graphs originally grounded in sparse methods and move

towards a more map-centric approach that more elegantly fits

the model-predictive characteristics of a typical dense fron-

tend. For this reason we also put a strong emphasis on hard

real-time operation in order to always be able to use surface

prediction every frame for true incremental simultaneous lo-

calisation and dense mapping. This is in contrast to other

dense reconstruction systems which don’t strictly perform

both tracking and mapping in real-time (Steinbrücker et al.

(2013, 2014)). Typically with volumetric SLAM systems (as

opposed to point-based systems) real-time map correction is

difficult due to the sheer amount of data that requires updat-

ing. Hybrid semi-real-time approaches have been developed

which function in a similar vein to the parallel tracking and

mapping (PTAM) system of Klein and Murray (2007), where

tracking in the frontend is real-time and uninterrupted while

a backend optimiser performs map correction. The work of

Fioraio et al. (2015) is an example of one such system, where

tracking is performed using last-k-frame subvolumes that are

gradually globally aligned and fused together in a background

optimisation process.

The approach we have developed in this paper is closer to

the offline dense scene reconstruction system of Zhou et al.

(2013) than a traditional SLAM system in how it places much

more emphasis on the accuracy of the reconstructed map

over the estimated trajectory. However rather than register-

ing small incremental fragments together in an alternating

global optimisation, we embed a complete deformation graph
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Figure 2: Example SLAM sequence with active model coloured by surface normal overlaid on the inactive model in greyscale; (i) initially all data is in the

active model as the camera moves left; (ii) as time goes on, the area of map not seen recently is set to inactive. Note the highlighted area; (iii) the camera

revisits the inactive area of the map, closing a local loop and registering the surface together. The previously highlighted inactive region then becomes active;

(iv) camera exploration continues to the right and more loops are closed; (v) continued exploration to new areas; (vi) the camera revisits an inactive area but

has drifted too far for a local loop closure; (vii) here the misalignment is apparent, with red arrows visualising equivalent points from active to inactive; (viii)

a global loop closure is triggered which aligns the active and inactive model; (ix) exploration to the right continues as more local loop closures are made and

inactive areas reactivated; (x) final full map coloured with surface normals showing underlying deformation graph and sampled camera poses in global loop

closure database.

across the full incrementally reconstructed surface and solve

the global consistency problem online in real-time. Other pre-

vious works have applied deformation graphs specifically in

object scanning (Weise et al. (2009)) and automatic skeleton

rigging for 3D avatars (Chen et al. (2012)). There are also par-

allels in our approach to the real-time non-rigid reconstruction

system of Newcombe et al. (2015) in how an embedded sur-

face deformation graph is utilised for alignment rather than

propagation of some camera pose update information.

In our map-centric approach to dense SLAM we attempt

to apply surface loop closure optimisations early and often,

and therefore always stay near to the mode of the map dis-

tribution. This allows us to employ a non-rigid space defor-

mation of the map using a sparse deformation graph embed-

ded in the surface itself rather than a probabilistic pose graph

which is rigidly transforming independent keyframes. As we

show in our evaluation of the system in Section 8, this ap-

proach to dense SLAM achieves state-of-the-art performance

with trajectory estimation results on par with or better than

existing dense SLAM systems that utilise pose graph optimi-

sation. We also demonstrate the capability to capture com-

prehensive dense scans of room scale environments involv-

ing complex loopy camera trajectories as well as more tradi-

tional “corridor-like” forward facing trajectories. At the time

of writing we believe our real-time approach (first outlined in

Whelan et al. (2015b)) to be the first of its kind to; (i) use pho-

tometric and geometric frame-to-model predictive tracking in

a fused surfel-based dense map; (ii) perform dense model-

to-model local surface loop closures with a non-rigid space

deformation and (iii) utilise a predicted surface appearance-

based place recognition method to resolve global surface loop

closures and hence capture globally consistent dense surfel-

based maps without a pose graph. In this extended paper

we provide a more in-depth description of the system and

also present the novel addition of relative constraints within

the space deformation, discovered to be required for more

complex camera trajectories. Furthermore we build upon the

predictive capabilities of the dense globally consistent maps

made available with our system to develop an approach to

real-time discrete light source detection, which to our knowl-

edge has not been shown in any other similar system.

2 Approach Overview

We adopt an architecture which is typically found in real-time

dense visual SLAM systems that alternates between track-

ing and mapping (Newcombe et al. (2011a); Whelan et al.

(2015a); Keller et al. (2013); Henry et al. (2013); Chen et al.

(2013); Newcombe et al. (2011b)). Like many dense SLAM

systems ours makes significant use of GPU programming. We

mainly use CUDA to implement our tracking reduction pro-

cess and the OpenGL Shading Language for view prediction

and map management. Our approach is grounded in estimat-

ing a dense 3D map of an environment explored with a stan-

dard RGB-D camera (such as the Microsoft Kinect or ASUS

Xtion Pro Live) in real-time. In the following, we summarise

the key elements of our method.

1. Estimate a fused surfel-based model of the environment.

This component of our method is inspired by the surfel-

based fusion system of Keller et al. (2013), with some

notable differences outlined in Section 3.

2. While tracking and fusing data in the area of the model

most recently observed (active area of the model), seg-

ment older parts of the map which have not been ob-

served in a period of time δt into the inactive area of the

model (not used for tracking or data fusion).

3. Every frame, attempt to register the portion of the ac-

tive model within the current estimated camera frame

with the portion of the inactive model underlaid within

the same frame. If registration is successful, a loop has
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been closed to the older inactive model and the model

is non-rigidly deformed into place to reflect this regis-

tration. The inactive portion of the map which caused

this loop closure is then reactivated to allow tracking and

surface fusion (including surfel culling) to take place be-

tween the registered areas of the map.

4. For global loop closure, add predicted views of the scene

to a randomised fern encoding database (Glocker et al.

(2015)). Each frame, attempt to find a matching pre-

dicted view via this database. If a match is detected,

register the views together and check if the registration

is globally consistent with the model’s geometry. If so,

reflect this registration in the map with a non-rigid defor-

mation, bringing the surface into global alignment.

Figure 2 provides a visualisation of the outlined four main

steps of our approach. An in-depth system architecture dia-

gram is shown in Figure 3 along with a detailed caption. In

the following section we describe our fused map representa-

tion and method for predictive tracking.

3 Fused Predicted Tracking

Our scene representation is an unordered list of surfels M
(similar to the representation used by Keller et al. (2013)),

where each surfelMs
has the following attributes; a position

p ∈ R
3
, normal n ∈ R

3
, colour c ∈ N

3
, weight w ∈ R, ra-

dius r ∈ R, initialisation timestamp t0 and last updated times-

tamp t. The radius of each surfel is intended to represent the

local surface area around a given point while minimising vis-

ible holes, initialised as:

r =
d
√
2

f |nz|
(1)

where d is the depth, f is the focal length of the depth cam-

era and nz the z component of the estimated normal (com-

puted via central difference on the input depth map). Sur-

fel weights are initialised as w = e−γ
2
/2σ

2

where γ is the

normalised radial distance of the current depth measurement

from the camera center and σ = 0.6 in accordance with pre-

vious work (Keller et al. (2013)). The update rules for each

surfel component are detailed as follows, where the prime su-

perscript (e.g. p
′
) denotes the newly associated measurement

for a given surfel (after live raw depth map registration), and

the hat operator (e.g. p̂) denotes the new updated value for a

given surfel at the next time step:

p̂ =
wp+ w′

p
′

w + w′ (2)

n̂ =
wn+ w′

n
′

w + w′ (3)

r̂ =
wr + w′r′

w + w′ (4)

ŵ = w + w′
(5)

An equivalent update rule applies to the colour attribute unless

light source estimation is being performed, which is described

in Section 7.1.1. When using the map for pose estimation our

approach differs to previous related work in two ways; (i) in-

stead of only predicting a depth map via splatted rendering for

geometric frame-to-model tracking, we additionally predict a

full colour splatted rendering of the model surfels to perform

photometric frame-to-model tracking; (ii) we define a time

window threshold δt which dividesM into surfels which are

active and inactive. Only surfels which are marked as active

model surfels are used for camera pose estimation and depth

map fusion. A surfel in M is declared as inactive when the

time since that surfel was last updated (i.e. had a raw RGB-

D measurement associated with it for fusion) is greater than

δt. In the following, we describe our method for joint pho-

tometric and geometric pose estimation from a splatted surfel

prediction.

We define the image space domain as Ω ⊂ N
2
, where

an RGB-D frame is composed of a depth map D of depth

pixels d : Ω → R and a colour image C of colour pixels

c : Ω → N
3
. We define the 3D back-projection of a point

u ∈ Ω given a depth mapD as p(u,D) = K
−1

ud(u), where

K is the camera intrinsics matrix and u the homogeneous

form of u. We also specify the perspective projection of a

3D point p = [x, y, z]⊤ (represented in camera frame F−→C) as

u = π(Kp), where π(p) = [x/z, y/z]⊤ denotes the deho-

mogenisation operation. The intensity value of a pixel u ∈ Ω
given a colour image C with colour c(u) = [c1, c2, c3]

⊤
is de-

fined as I(u, C) = c(u)⊤i, where i = [0.114, 0.299, 0.587]⊤.

For each input frame at time t we estimate the global pose of

the camera Pt (w.r.t. a global frame F−→G) by registering the

current live depth map and colour image captured by the cam-

era with the surfel-splatted predicted depth map and colour

image of the active model from the previous pose estimate.

All camera poses are represented with a transformation ma-

trix where:

Pt =

[

Rt tt
0 0 0 1

]

∈ SE3, (6)

with rotation Rt ∈ SO3 and translation tt ∈ R
3
.

3.1 Geometric Pose Estimation

Between the current live depth map (latest raw depth frame

received from the sensor) Dl
t and the predicted active model

depth map from the last frame (rendered from the current

model estimate) D̂a
t−1 we aim to find the motion parameters ξ

that minimise the cost over the point-to-plane error between

3D back-projected vertices:

Eicp =
∑

k

((

v
k − exp(ξ̂)Tv

k
t

)

· nk
)2

, (7)

where v
k
t is the back-projection of the k-th vertex in Dl

t, v
k

and n
k

are the corresponding vertex and normal represented
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Figure 3: System architecture diagram; (i) the current live depth map D
l
t and colour image C

l
t are aligned with the predicted active model from the previous

frame (D̂
a
t−1 and Ĉ

a
t−1). Next, a new predicted view of the active model (D

a
t and C

a
t ) is rendered and matched against the fern database; (ii) if a matching

frame Eid is found, an attempt is made to register the matched view with the current predicted active view. If successful this yields a deformation of the

model M̂ and pose update P̂t; (iii) failing this, the inactive model in the current view is predicted (D
i
t and C

i
t) and then registered with the portion of the

active model in the current view. If successful, the model is deformed to incorporate this registration, while all visible inactive points are merged with the set

of active points; (iv) live camera data is fused with the latest updated model M̂ and an up to date prediction of the active model (D̂
a
t and Ĉ

a
t ) is rendered to

track against in the next frame, while also potentially being added to the fern database Ê .

in the previous camera coordinate frame (at time step t−1).

T is the current estimate of the transformation from the pre-

vious camera pose to the current one and exp(ξ̂) is the matrix

exponential that maps a member of the Lie algebra se3 to a

member of the corresponding Lie group SE3. Vertices are as-

sociated using projective data association (Newcombe et al.

(2011a)).

3.2 Photometric Pose Estimation

Between the current live colour image Clt and the predicted

active model colour from the last frame Ĉat−1 we aim to find

the motion parameters ξ that minimise the cost over the pho-

tometric error (intensity difference) between pixels:

Ergb =
∑

u∈Ω

(

I(u, C
l
t)− I

(

π(K exp(ξ̂)Tp(u,D
l
t)), Ĉ

a
t−1

))2

,

(8)

where as above T is the current estimate of the transforma-

tion from the previous camera pose to the current one. Note

that Equations 7 and 8 omit conversion between 3-vectors

and their corresponding homogeneous 4-vectors (as needed

for multiplications with T) for simplicity of notation.

3.3 Joint Optimisation

At this point we wish to minimise the joint cost function:

Etrack = Eicp + wrgbErgb, (9)

with wrgb = 0.1 in line with related work (Henry et al. (2013);

Whelan et al. (2015a)). A visualisation of the residuals for this

cost function is shown in Figure 4. To optimise this cost we

use the Gauss-Newton non-linear least-squares method with

a three level coarse-to-fine pyramid scheme. To solve each

iteration we calculate the least-squares solution:

argmin
ξ

‖Jξ + r‖22 , (10)

to yield an improved camera transformation estimate:

T
′ = exp(ξ̂)T (11)

ξ̂ =

[

[ω]× x

0 0 0 0

]

, (12)

with ξ = [ω⊤
x
⊤]⊤, ω,∈ R

3
and x ∈ R

3
.

Blocks of the combined measurement Jacobian J and resid-

ual r can be populated (while being weighted according to

wrgb) and solved with a highly parallel tree reduction in

CUDA to produce a 6× 6 system of normal equations which

is then solved on the CPU by Cholesky decomposition to

yield ξ. The outcome of this process is an up to date camera
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(i) (ii)

Figure 4: Visualisation of frame-to-model tracking components; (i) shown in clockwise order is the live colour image C
l
t, the live depth map D

l
t, the predicted

depth map D
a
t−1 and the predicted colour image C

a
t−1; (ii) the top row in this subfigure shows the initial residual errors for the photometric cost Ergb and

geometric cost Eicp. The bottom row shows the residual error after minimisation of the joint cost Etrack according to Equation 9. In this particular frame

the normalised initial average cost was reduced from 1.0 to 0.3.

pose estimate Pt = TPt−1 which brings the live camera data

Dl
t and Clt into strong alignment with the current active model

(and hence ready for fusion with the active surfels inM).

4 Deformation Graph

In order to ensure local and global surface consistency in the

map we reflect successful surface loop closures in the set of

surfels M. This is carried out by non-rigidly deforming all

surfels (both active and inactive) according to surface con-

straints provided by either of the loop closure methods later

described in Sections 5 and 6. We adopt a space deformation

approach based on the embedded deformation technique of

Sumner et al. (2007).

A deformation graph is composed of a set of nodes and

edges distributed throughout the model to be deformed. Each

node Gn has a timestamp Gnt0 , a position Gng ∈ R
3

and set

of neighbouring nodes N (Gn). The neighbours of each node

make up the (directed) edges of the graph. A graph is con-

nected up to a neighbour count k such that ∀n, |N (Gn)| = k.

We use k = 4 in all of our experiments. Each node also

stores an affine transformation in the form of a 3 × 3 matrix

GnR and a 3 × 1 vector Gnt , initialised by default to the iden-

tity and [0, 0, 0]⊤ respectively. When deforming a surface, the

GnR and Gnt parameters of each node are optimised according

to surface constraints, which we later describe in Section 4.3.

In order to apply a deformation graph to the surface, each

surfel Ms
identifies a set of influencing nodes in the graph

I(Ms,G). The deformed position of a surfel is given by:

M̂
s
p = φ(M

s
) =

∑

n∈I(M
s
,G)

w
n
(M

s
)
[

G
n
R(M

s
p − G

n
g ) + G

n
g + G

n
t

]

,

(13)

while the deformed normal of a surfel is given by:

M̂s
n =

∑

n∈I(M
s
,G)

wn(Ms)GnR−1⊤Ms
n, (14)

where wn(Ms) is a scalar representing the influence node Gn
has on surfelMs

, summing to a total of 1 when n = k:

wn(Ms) = (1−
∥

∥Ms
p − Gng

∥

∥

2
/dmax)

2. (15)

Here dmax is the Euclidean distance to the k+1-nearest node

ofMs
. In the following we describe our method for sampling

the deformation graph G from the set of surfelsM along with

our method for determining graph connectivity.

4.1 Construction

Each frame a new deformation graph for the set of surfels

M is constructed, since it is computationally cheap and sim-

pler than incrementally modifying an existing one. We ini-

tialise a new deformation graph G each frame with node posi-

tions set to surfel positions (Gng =Ms
p) and node timestamps

set to surfel initialisation timestamps (Gnt0 = Ms
t0

) sampled

from M using systematic sampling such that |G| ≪ |M|.
Note that this sampling is uniformly distributed over the pop-

ulation, causing the spatial density of G to mirror that of

M. The set G is also ordered over n on Gnt0 such that

6



Figure 5: Temporal deformation graph connectivity before loop closure. The top half shows a mapping sequence where the camera first maps left to right

over a desk area and then back across the same area. Given the windowed fusion process it appears that the map and hence deformation graph is tangled up in

itself between passes. However, observing the bottom half of the figure where the vertical dimension has been artificially stretched by the initialisation times

Mt
0

and Gt
0

of each surfel and graph node respectively, it is clear that multiple passes of the map are disjoint and free to be aligned.
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∀n,Gnt0 ≥ G
n−1
t0

,Gn−2
t0

, . . . ,G0t0 . To compute the connectiv-

ity of the graph we use this initialisation time ordering of G
to connect nodes sequentially up to the neighbour count k,

defining N (Gn) = {Gn±1,Gn±2, . . . ,Gn± k

2 }. This method

is computationally efficient (compared to spatial approaches

such as Sumner et al. (2007) and Chen et al. (2012)) but

more importantly prevents temporally uncorrelated areas of

the surface from influencing each other (i.e. active and in-

active areas), as shown in Figure 5. Note that in the case

where n ± k
2 is less than zero or greater than |G| we con-

nect the graph either forwards or backwards from the bound.

For example, N (G0) = {G1,G2, . . . ,Gk} and N (G|G|) =

{G|G|−1,G|G|−2, . . . ,G|G|−k}. Next we describe how to ap-

ply the deformation graph to the map of surfels.

4.2 Application

In order to apply the deformation graph after optimisation (de-

tailed in the next section) to update the map, the set of nodes

which influence each surfelMs
must be determined. In tune

with the method in the previous section a temporal associa-

tion is chosen, similar to the approach taken by Whelan et al.

(2015a). The algorithm which implements I(Ms,G) and ap-

plies the deformation graph G to a given surfel is listed in

Algorithm 1. When each surfel is deformed, the full set of

deformation nodes is searched for the node which is closest

in time. The solution to this L1-norm minimisation is actu-

ally a binary search over the set G as it is already ordered.

From here, other nodes nearby in time are collected and the

k-nearest nodes (in the Euclidean distance sense) are selected

as I(Ms,G). Finally the weights for each node are computed

as in Equation 15 and the transformations from Equations 13

and 14 are applied. All other attributes of the updated surfel

M̂s
are copied fromMs

.

4.3 Optimisation

Given a set of surface correspondences Q and relative corre-

spondences R (later expanded upon in Sections 5 and 6) the

parameters of the deformation graph can be optimised to re-

flect a surface registration in the surfel modelM. An element

Qp ∈ Q is a tuple Qp = (Qp
d;Q

p
s ;Qp

dt

;Qp
st
) which contains

a pair of points (both in the global frame F−→G) representing a

destination position Qp
d ∈ R

3
and a source position Qp

s ∈ R
3

which should reach the destination upon deformation. The

timestamps of each point are also stored in Qp
as Qp

dt

and

Qp
st

respectively. We use five cost function summands over

the deformation graph, the first maximises rigidity in the de-

formation:

Erot =
∑

l

∥

∥

∥
GlR

⊤GlR − I

∥

∥

∥

2

F
, (16)

Algorithm 1: Deformation Graph Application

Input:Ms
surfel to be deformed

G set of deformation nodes

α number of nodes to explore

Output: M̂s
deformed surfel

do

// Find closest node in time

c← argmin
i

∥

∥

∥
Ms

t0
− Git0

∥

∥

∥

1

// Get set of temporally nearby nodes

I ← ∅
for i← −α/2 to α/2 do

Ii+α/2 ← c+ i

sort by euclidean distance(I,G,Ms
p)

// Take closest k as influencing nodes

I(Ms,G)← I0→k−1

// Compute weights

h← 0

dmax ←
∥

∥

∥
Ms

p − GI
k

g

∥

∥

∥

2

for n ∈ I(Ms,G) do

wn(Ms)← (1−
∥

∥Ms
p − Gng

∥

∥

2
/dmax)

2

h← h+ wn(Ms)

// Apply transformations

M̂
s
p =

∑

n∈I(M
s
,G)

w
n
(M

s
)

h

[

G
n
R(M

s
p − G

n
g ) + G

n
g + G

n
t

]

M̂
s
n =

∑

n∈I(M
s
,G)

w
n
(M

s
)

h
G
n
R

−1⊤
M

s
n
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using the Frobenius-norm. The second is a regularisation term
that ensures a smooth deformation across the graph:

Ereg =
∑

l

∑

n∈N (G
l
)

∥

∥

∥
G

l
R(G

n
g − G

l
g) + G

l
g + G

l
t − (G

n
g + G

n
t )

∥

∥

∥

2

2

(17)

The third is a constraint term that minimises the error on the

set of position constraints Q, where φ(Qp
s) is the result of

applying Equation 13 to Qp
s :

Econ =
∑

p

‖φ(Qp
s)−Qp

d‖
2

2 (18)

Note that in order to apply Equation 13 to Qp
s we must com-

pute I(Qp
s ,G) and subsequently wn(Qp

s). For this we use the

same algorithm as described in Algorithm 1 to deform the po-

sition only, usingQp
s (inclusive of timestampQp

st
) in place of

Ms
. In practice Qp

st
will always be the timestamp of a surfel

within the active model while Qp
dt

will be the timestamp of

a surfel within the inactive model. The temporal parameter-

isation of the surface we are using allows multiple passes of

the same surface to be non-rigidly deformed into alignment

allowing mapping to continue and new data fusion into re-

visited areas of the map. Given this, the fourth cost function

“pins” the inactive area of the model in place ensuring that

we are always deforming the active area of the model into the

inactive coordinate system:

Epin =
∑

p

‖φ(Qp
d)−Q

p
d‖

2

2 (19)

As above we use Algorithm 1 to compute φ(Qp
d), using Qp

d

in place ofMs
. The final cost function uses the set of relative

constraints R to prevent previous surface registrations from

being pulled apart by subsequent global loop closures. An el-

ement Rp ∈ R is a tuple Rp = (Rp
d;R

p
s ;Rp

dt

;Rp
st
) which

contains a pair of points (again both in the global frame F−→G)

representing a destination positionRp
d ∈ R

3
and a source po-

sition Rp
s ∈ R

3
whose relative distance should be minimised

upon deformation:

Erel =
∑

p

‖φ(Rp
s)− φ(Rp

d)‖
2

2 (20)

With wf = 1, wr = 10 and wc = 100 (in line with related

work (Sumner et al. (2007); Chen et al. (2012); Whelan et al.

(2015a))), the combined total cost function for a local loop

closure (detailed in Section 5) is defined as:

Eloc = wfErot + wrEreg + wc(Econ + Epin) (21)

and during a global loop closure (detailed in Section 6):

Eglo = wfErot +wrEreg +wc(Econ +Epin +Erel) (22)

We minimise this total cost with respect to GnR and Gnt over

all n nodes during a global loop closure and over only the

n nodes since the last loop closure during a local loop clo-

sure using the iterative Gauss-Newton algorithm. The Jaco-

bian matrix in this problem is sparse and as a result we use

sparse Cholesky factorisation to efficiently solve the system

on the CPU. From here the deformation graph G is uploaded

to the GPU for application to the surfel map as described in

Section 4.2.

5 Local Loop Closure

To ensure local surface consistency throughout the map our

system closes many small loops with the existing map as those

areas are revisited. As shown in Figure 2, we fuse into the

active area of the model while gradually labeling surfels that

have not been seen in a period of time δt as inactive. The inac-

tive area of the map is not used for live frame tracking and fu-

sion until a loop is closed between the active model and inac-

tive model, at which point the matched inactive area becomes

active again. This has the advantage of continuous frame-to-

model tracking and also model-to-model tracking which pro-

vides viewpoint-invariant local loop closures.

We divide the set of surfels in our mapM into two disjoint

sets Θ and Ψ, such that given the current frame timestamp

t for each surfel in the map Ms ∈ Θ if t −Ms
t < δt and

Ms ∈ Ψ if t −Ms
t ≥ δt, making Θ the active set and Ψ

the inactive set. In each frame, according to our architecture

in Figure 3, if a global loop closure has not been detected

(described in the following section), we attempt to compute a

match between Θ and Ψ. This is done by registering the pre-

dicted surface renderings of Θ and Ψ from the latest pose es-

timate Pt, denoted Da
t , Cat and Di

t, Cit respectively. This pair

of model views is registered together using the same method

as described in Section 3. The output of this process will be a

relative transformation matrix H ∈ SE3 from Θ to Ψ which

brings the two predicted surface renderings into alignment.

In order to check the quality of this registration and decide

whether or not to carry out a deformation, we inspect the fi-

nal cost of the Gauss-Newton tracking optimisation used to

align the two views. The residual cost Etrack from Equation

9 must be sufficiently small, while the number of inlier mea-

surements used must be above a minimum threshold. We also

inspect the eigenvalues of the relative pose covariance of the

system (approximated by the Hessian as Σ = (J⊤
J)−1) by;

σi(Σ) < µ for i = {1, . . . , 6}, where σi(Σ) is the i-th eigen-

value of Σ and µ a sufficiently conservative threshold.

If a high quality alignment has been achieved, we produce

a set of surface constraints Q which are fed into the defor-

mation graph optimisation described in Section 4 to align the

surfels in Θ with those in Ψ. To do this we also require the ini-

tialisation timestamps Ψt0
of each surfel splat used to render

Di
t. These are rendered as T i

t and are necessary to correctly

constrain the deformation between the active model and inac-

tive model. We uniformly sample a set of pixel coordinates

U ⊂ Ω to compute the set Q. For each pixel u ∈ U we

9



populate a constraint:

Qp = ((HPt)p(u,Da
t );Ptp(u,Da

t ); T i
t (u); t). (23)

After the deformation has occurred a new up to date camera

pose is resolved as P̂t = HPt. At this point the set of sur-

fels which were part of the alignment are reactivated to allow

live camera tracking and fusion with the existing active sur-

fels. An up to date prediction of the active model depth must

be rendered to reflect the deformation for the depth test for

inactive surfels, computed as D̃a
t . For each surfelMs

:

Ms
t =







t if π(KP̂
−1
t Ms

p) ∈ Ω

and (KP̂
−1
t Ms

p)z . D̃a
t (π(KP̂

−1
t Ms

p)),
Ms

t else.

(24)

The process described in this section brings active areas

of the model into strong alignment with inactive areas of the

model to achieve tight local surface loop closures. In the event

of the active model drifting too far from the inactive model for

local alignment to converge, we resort to an appearance-based

global loop closure method to bootstrap a surface deformation

which realigns the active model with the underlying inactive

model for tight global loop closure and surface global consis-

tency. This is described in the following section. Note that for

each successful local loop closure we cache a subsampled set

of the post-deformation surface constraints R ⊂ Q and con-

vert them to relative constraints through Equation 20 in order

to “stick” the registered surfaces together locally, while allow-

ing their position to vary globally provided that their relative

position does not change. The inclusion of this set of relative

constraintsR in the global loop closure cost in Equation 22 is

also described in the following section.

6 Global Loop Closure

We utilise the randomised fern encoding approach of Glocker

et al. (2015) for appearance-based place recognition. Ferns

encode an RGB-D image as a string of codes made up of

the values of binary tests on each of the RGB-D channels

in a set of fixed pixel locations. The approach presented by

Glocker et al. (2015) includes an automatic method for fern

database management that avoids adding redundant views and

non-discriminative frames. This technique has been demon-

strated to perform very reliably in terms of computational per-

formance and viewpoint recognition. Our implementation of

randomised fern encoding is identical to that of Glocker et al.

(2015) with the difference that instead of encoding and match-

ing against raw RGB-D frames, we use predicted views of the

surface map once they are aligned and fused with the live cam-

era view. Parts of the predicted views which are devoid of any

mapped surface are filled in using the live depth and colour

information from the current frame.

Each frame we maintain a fern encoded frame database E ,

using the same process as originally specified by Glocker

et al. (2015) for fern encoding, frame harvesting and identifi-

cation of matching fern encodings. As they suggest, we use

a downsampled frame size of 80 × 60. Each element E i ∈ E
contains a number of attributes; a fern encoding string E if , a

depth map E iD, a colour image E iC , a source camera pose E iP
and an initialisation time E it . At the end of each frame we add

D̂a
t and Ĉat (predicted active model depth and colour after fu-

sion filled in with Dl
t and Clt) to E if necessary. We also query

this database immediate after the initial frame-to-model track-

ing step to determine if there is a global loop closure required.

If a matching frame E i is found we perform a number of steps

to potentially globally align the surfel map.

Firstly, we attempt to align the matched frame with the cur-

rent model prediction. Similar to the previous section, this in-

volves utilising the registration process outlined in Section 3

to bring Da
t and Cat into alignment with E iD and E iC , includ-

ing inspection of the final condition of the optimisation. If

successful, a relative transformation matrix H ∈ SE3 which

brings the current model prediction into alignment with the

matching frame is resolved. From here, as in the previous

section, we populate a set of surface constraints Q to provide

as input to the deformation, where each u is a randomly sam-

pled fern pixel location (lifted into full image resolution):

Qp = ((HE iP)p(u,Da
t );Ptp(u,Da

t ); E it ; t). (25)

Note Qp
d which incorporates the difference in the estimated

point position given by the alignment and the known actual

global point position given by E iP. From here, the deformation

cost from Equation 22 is computed and evaluated to deter-

mine if the proposed deformation is consistent with the map’s

geometry. We are less likely to accept unreliable fern match-

ing triggered deformations as they operate on a much coarser

scale than the local loop closure matches. If Econ is too small

the deformation is likely not required and the loop closure is

rejected (i.e. it should be detected and applied as a local loop

closure). Otherwise, the deformation graph is optimised and

the final state of the Gauss-Newton system is analysed to de-

termine if it should be applied. If after optimisation Econ is

sufficiently small while over all Edef is also small, the loop

closure is accepted and the deformation graph G is applied to

the set of surfelsM. At this point the current pose estimate

is also updated to P̂t = HE iP. Unlike in the previous section

the set of active and inactive surfels is not revised at this point.

This is for two main reasons; (i) correct global loop closures

bring the active and inactive regions of map into close enough

alignment to trigger a local loop closure on the next frame and

(ii) this allows the map to recover from potentially incorrect

global loop closures. We also have the option of relying on

the fern encoding database for global relocalisation if camera

tracking ever fails (however this was not encountered in any

evaluated datasets).

6.1 Relative Constraints

Given that upon deformation optimisation the set of surface

constraints Q are effectively “baked” into the map and for-

gotten about, it is possible (due to the temporal connectivity

10



(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

Figure 6: Relative constraint motivation. This figure shows a simple mapping sequence where relative constraints are necessary to prevent surface corruption;

(i)-(iii) camera maps from the empty desk on the left towards the occupied desk on the right; (iv) the empty desk is revisited and remapped, here the surface

correspondences are shown which are brought into alignment in Subfigure (v) by a loop closure; (vi) camera moves back towards the occupied desk on the

right and closes another loop, however shown in Subfigure (vii) without relative constraints the previous loop closure registration is torn apart; (viii) shown

finally is the same sequence except using relative constraints, preventing the previous loop closure from being torn apart.

11



parameterisation of the deformation graph) for previously reg-

istered areas to be torn apart during subsequent loop closures

without the inclusion of relative constraints accumulated from

all previous local loop closures. Without relative constraints,

there is no term in the deformation optimisation which en-

courages previously registered areas of the map to stick to-

gether. Hence we cache a small number of relative surface

constraints from each local loop closure to include in every

subsequent deformation, preventing surface tearing in areas

with previous loop closures. This is demonstrated in Fig-

ure 6. While this does imply that the number of constraints

in the global loop closure optimisation grows continuously as

more loops are closed, only a small number of relative con-

straints are required from the full set of surface constraints Q
in each loop closure to maintain consistency. In practice this

causes the execution time of the optimisation to only grow

very slowly, where the predicted view rendering time still

dominates in terms of scaling performance bottlenecks.

7 Light Source Detection

Up until now, capturing a room scale globally consistent map

in real-time which can be used for fully dense prediction has

been impossible. Now given this capability we can begin to

reason about higher order scene attributes beyond geometry

and diffuse lambertian surface appearance. In particular, dis-

crete point light source estimation is of particular interest due

to its usability in predictive tracking, path planning and real-

time augmented reality effects. In order to detect a discrete

set of light sources in an enviroment we exploit the predictive

powers of the models produced by the described SLAM sys-

tem. By using a globally consistent rich geometric map in our

light source estimation process we can make many meaning-

ful predictions and assumptions about measurements accrued

from raw data. In the following, we summarise the key ele-

ments of our method.

1. Estimate a fused surfel-based model of the environment.

This component of our method utilises the surfel-based

fusion system described in the previous sections. How-

ever, there are some important points in our approach to

colour data fusion required for diffuse appearance esti-

mation which we later detail in Section 7.1.

2. While camera tracking and data fusion is carried out, de-

tect specular light source reflections off individual sur-

fels using the estimated diffuse appearance of each sur-

fel.

3. Aggregate each reflected ray measurement in a 3D spa-

tially hashed voxel space in a raycast hough-like voting

scheme.

4. Integrate information about the observed geometry of the

scene (surfaces and freespace) into the voxel space to

cull and constrain possible light source positions.

5. Extract voxels at the intersection of many reflected ray

votes and scene geometry as hypothesised light sources.

6. Cluster all hypothesised light source voxels together to

retrieve a set of discrete light sources.

The full pipeline that composes our method runs in real-

time at camera framerate while the user is exploring the scene.

This allows online estimation of numerous light sources with-

out any offline or batch post-processing steps. In the follow-

ing section we describe our underlying scene representation

and method for detecting specular light source ray reflections.

7.1 Specular Reflection Detection

As mentioned previously, our method is grounded on the

availability of a rich, fully predictive dense 3D geometric

model. While many approaches exist to create such a model

in real-time there are few that guarantee global consistency

(Whelan et al. (2015a)). In order for reflected ray measure-

ments to agree our model must be high quality and drift-free

(as provided by our described dense SLAM system). The un-

derlying representation in this system is a dense map of sur-

fels. We describe our specific rules for colour data fusion for

diffuse appearance estimation below. Note that we disable the

automatic exposure and white balance features on the sensor

prior to beginning data capture with our system (known to be

an undesirable attribute of popular RGB-D sensors). This is

a current limitation of our approach as there is an assumption

made that the only changes in intensity observed for a given

surface will be due to a light source in the scene propagating

through the bidirectional reflectance distribution function of

that surface. However, if the exact exposure and white balance

settings for the sensor were available at the time of capture

(which is not the case with current consumer depth cameras),

along with the camera response function for the detector, the

algorithm could easily utilise data with variable exposure and

white balance.

7.1.1 Surfel-based Fusion

As mentioned in Section 3, each surfel Ms
has a diffuse

colour c ∈ R
3

(stored as unit RGB components). We also

store for each surfel the last brightest intensity measured for

that surfel l ∈ R, the direction of the ray reflected by that

surfel at its last brightest viewing angle h ∈ R
3

and the dif-

ference between the diffuse surfel intensity and the maximum

measured intensity at its last brightest viewing angle ∆l ∈ R.

In all cases, where applicable, the surfel attribute quantities

are in the global coordinate frame.

When fusing colour information our approach differs to

previous work; instead of simply fusing in a moving average

fashion, we only fuse colour measurements which are strictly

no brighter than the current colour value by a large margin.

To update the diffuse colour value we use the following

scheme (where like in Section 3, i maps colour to intensity):
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(i) (ii)

Figure 7: Diffuse colour surface reconstruction; (i) real RGB image of the current scene; (ii) fused diffuse colour surface reconstructed with notable

diminishing of the specular reflection from the point light source in the scene.

α = c · i (26)

β = c
′ · i (27)

ĉ =

{

wc+w
′

c
′

w+w
′ if β ≤ α+ ǫ

c else.
(28)

An example output of this process is shown in Figure 7.

7.1.2 Ray Detection

In order to detect reflected ray measurements we compare

the individual estimated diffuse surfel intensities to raw live

measurement intensities of pixels associated with each surfel

during data fusion. For each input frame during the data as-

sociation step, we associate at most one pixel measurement

with each surfel in the model. This is accomplished by splat-

ting the surfel model as a predicted view of the scene given

the most recently estimated camera pose Pt, and associating

raw depth and colour measurements with each surfel based

on some data association metrics (for more details see Keller

et al. (2013)). From here, we can compute the α and β dif-

fuse and raw intensity values respectively (as listed in Equa-

tions 26 and 27). If the raw intensity value β is greater than

the previous maximum intensity for that surfel l, we can up-

date the lighting related components of the surfel as follows,

where italicised values such as p denote the value of p in the

camera coordinate frame (i.e. including homogenisation and

dehomogenisation through multiplication with Pt
−1

) and the

tilde operator denotes normalisation (e.g. ã = a
||a|| ):

l̂ = β (29)

∆̂l = β − α (30)

ĥ = Rt(p̃− 2(p̃ · n)n) (31)

Each frame, any surfel that had its maximum intensity

value l updated triggers a new ray measurement if the new

∆l value of that surfel is above some predefined threshold.

This essentially implements the logic that if we observe an in-

tensity much greater than our estimated diffuse intensity for

a given surfel, we are probably measuring a bright specular

reflection. In order to prevent spurious ray measurements due

to misalignment errors between the raw image data and the

predicted model data, we exclude large intensity change mea-

surements in points of the predicted image that have a high

local gradient in image space. Each frame the output of this

process is a set of new reflected ray measurements H. Each

ray measurement has a source position componentHp, which

is the position of the surfel the ray was observed from, and

a direction component Hh, being the direction the reflected

ray travels off the surfel. This process is visualised in Figure

8. This set of measurements is fed into our pipeline for light

source estimation, which we describe in the following section.

7.2 Light Source Estimation

In order to estimate regions in space which are likely to con-

tain light sources we integrate both the information contained

within the estimated geometry of the scene and the specular

reflection ray measurements discussed in the previous section.

The data structure used in this procedure is a spatially hashed

voxel grid V . Using spatial hashing has the advantages of
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Figure 8: Specular reflection ray detection described in Section 7.1.2. This

figure shows the relationship between the moving sensor, diffuse surface re-

construction and light source in terms of the vector quantities used to estimate

the source ray h which produces a specular reflection on a surface.

being memory efficient, computationally efficient in terms of

look-up and also not requiring the predefinition of the spatial

extent of the voxel grid (Nießner et al. (2013)). Each voxel

Vi ∈ V has a number of attributes; a position Vp ∈ R
3
, an

integration value Vn ∈ N, a freespace flag and a geometry

flag. Voxels are dynamically allocated on-the-fly as they are

required.

7.2.1 Ray Measurement Integration

Each frame we integrate the set of reflected ray measurements

H into the voxel grid, incrementing the integration value Vn
of each voxel the rays pass through. Rather than casting a sin-

gle ray through the voxel grid a cone of rays is cast through

space, generating a spread which aids in representing the in-

herent uncertainty in the ray measurements. Rays are cast to

a fixed distance away from the source positionsHp (although

rays are not cast through scene geometry), typically no more

than 3m was found to be sufficient. This does mean that we

rule out the possibility of detecting light sources at infinity,

however in principle we could extend our approach to include

these as part of future work. Voxels are marked using a 3D

variation of the Bresenham line rasterisation algorithm to en-

sure good coverage.

7.2.2 Geometry Measurement Integration

Each frame we also integrate the information contained within

the reconstructed geometry of the scene. A low resolution

predicted depth map rendering of the model from the cur-

rent estimated camera pose is sampled and integrated into the

voxel grid to mark voxels as freespace and also as “geometry”

voxels. Rays from the current camera pose to each of the pre-

dicted depth map pixels are cast, where every voxel crossed

along the path is marked as freespace. Freespace voxels are

Figure 9: Ray measurement integration into the voxel grid for Figure 8.

Shown is the main voxel grid V , a number of integrated ray measurements H
and a light source detected with centroid Lp and bounding volume LB .

not valid candidates for light sources and have their integra-

tion values set permanently to 0. The voxels where the actual

geometry lies are marked as “geometry” voxels. If a voxel

is marked as a geometry voxel and it contains an integration

value above some threshold, it is marked as a potential light

source voxel. Figure 9 shows a 2D example of the ray mea-

surement integration process for the scene shown in Figure 8.

7.2.3 Light Source Clustering

Each newly marked potential light source voxel from the pre-

vious step is added to a second voxel grid volume which

only contains voxels that are hypothesised to belong to light

sources. Clusters with no observed geometry are not included

in our estimation process due to the inherent ambiguity in the

light source’s position and extent given only bundles of ray

measurements which may not accurately converge at the ex-

act point in space from where they are emitted. In order to

detect light sources in such a manner, a more comprehensive

collection of ray measurements with a specific camera tra-

jectory would be required (akin to the work of Jachnik et al.

(2012)).

It is in the second volume that light source clustering oc-

curs. We maintain a list of light sources L, where each light

source has a list of voxels making up that light source LV ,

a centroid position Lp ∈ R
3

to represent the 3D position of

the actual estimated light source and a bounding volume LB

which contains the 3D axis-aligned bounding box that con-

tains all voxels belonging to that light source.

Firstly, for each new light source voxel measurement, we

test the 6-connected neighbours of that voxel to see if an ex-

isting light source already neighbours the voxel. If so, the new

light source voxel is added to the existing light source, while

the matching light source’s centroid and bounding volume is

updated. If there are no existing neighbouring light sources at

this point, a new light source is initialised with the new light

source voxel as its only member.

Next we carry out a light source merging step. For all ex-

isting light sources in the scene, we identify pairs which have

overlapping bounding volumes. If any of the voxels in these

pairs of light sources are neighbouring in the 6-connected
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System fr1/desk fr2/xyz fr3/office fr3/nst

DVO SLAM 0.021m 0.018m 0.035m 0.018m

RGB-D SLAM 0.023m 0.008m 0.032m 0.017m

MRSMap 0.043m 0.020m 0.042m 2.018m

Kintinuous 0.037m 0.029m 0.030m 0.031m

Frame-to-model 0.022m 0.014m 0.025m 0.027m

ElasticFusion 0.020m 0.011m 0.017m 0.016m

Table 1: Comparison of ATE RMSE on the evaluated real world datasets of

Sturm et al. (2012).

sense, we merge the two light sources together (deleting one

light source and updating the list of voxels, centroid and

bounding volume of the other). The process is repeated un-

til it is no longer possible to merge any of the current light

sources in this manner.

The result of this process is a set of discrete light sources,

each with a spatial extent (encoded in the set of voxels clus-

tered into each light source) and a hypothesised central point.

In additional to this, we aggregate all rays which have con-

tributed to each light source in order to estimate the source

directionality (essentially the variance of the directions of all

reflected rays for a given light source). This information can

then be used to add rendered light sources to the scene for ei-

ther aiding predictive photometric tracking or producing more

convincing AR effects. We present results on both of these use

cases in Section 9.

8 Dense SLAM Evaluation

We evaluate the performance of our system both quantita-

tively and qualitatively in terms of trajectory estimation, sur-

face reconstruction accuracy and computational performance.

8.1 Trajectory Estimation

To evaluate the trajectory estimation performance of our ap-

proach we test our system on the RGB-D benchmark of Sturm

et al. (2012). This benchmark provides synchronised ground

truth poses for an RGB-D sensor moved through a scene, cap-

tured with a highly precise motion capture system. In Table 1

we compare our system to four other state-of-the-art RGB-

D based SLAM systems; DVO SLAM of Kerl et al. (2013),

RGB-D SLAM of Endres et al. (2012), MRSMap of Stückler

and Behnke (2014) and Kintinuous of Whelan et al. (2015a).

We also provide benchmark scores for our system if all de-

formations are disabled and only frame-to-model tracking is

used. We use the absolute trajectory (ATE) root-mean-square

error metric (RMSE) in our comparison, which measures the

root-mean-square of the Euclidean distances between all es-

timated camera poses and the ground truth poses associated

by timestamp (Sturm et al. (2012)). These results show that

our trajectory estimation performance is on par with or better

than existing state-of-the-art systems that rely on a pose graph

optimisation backend. Interestingly our frame-to-model only

System kt0 kt1 kt2 kt3

DVO SLAM 0.104m 0.029m 0.191m 0.152m

RGB-D SLAM 0.026m 0.008m 0.018m 0.433m

MRSMap 0.204m 0.228m 0.189m 1.090m

Kintinuous 0.072m 0.005m 0.010m 0.355m

Frame-to-model 0.497m 0.009m 0.020m 0.243m

ElasticFusion 0.009m 0.009m 0.014m 0.106m

Table 3: Comparison of ATE RMSE on the evaluated synthetic datasets of

Handa et al. (2014).

results are also comparable in performance, whereas a uni-

form increase in accuracy is achieved when active to inactive

model deformations are used, proving their efficacy in trajec-

tory estimation. Only on fr3/nst does a global loop closure

occur. Enabling local loops alone on this dataset results in an

error of 0.022m, while only enabling global loops results in

an error of 0.023m.

In addition to these comparison results we have also eval-

uated our system on all of the static scenes in the RGB-D

benchmark of Sturm et al. (2012). Our results are listed in

Table 2, along with dataset statistics and discussion on the

achieved performance.

8.2 Surface Estimation

We evaluate the surface reconstruction results of our approach

on the ICL-NUIM dataset of Handa et al. (2014). This bench-

mark provides ground truth poses for a camera moved through

a synthetic environment as well as a ground truth 3D model

which can be used to evaluate surface reconstruction accu-

racy. We evaluate our approach on all four trajectories in

the living room scene (including synthetic noise) providing

surface reconstruction accuracy results in comparison to the

same SLAM systems listed in Section 8.1. We also include

trajectory estimation results for each dataset. Tables 3 and 4

summarise our trajectory estimation and surface reconstruc-

tion results. Note on kt1 the camera never revisits previously

mapped portions of the map, making the frame-to-model and

ElasticFusion results identical. Additionally, only the kt3 se-

quence triggers a global loop closure in our approach. This

yields a local loop only ATE RMSE result of 0.234m and a

global loop only ATE RMSE result of 0.236m. On surface re-

construction, local loops only scores 0.099m and global loops

only scores 0.103m. These results show that again our tra-

jectory estimation performance is on par with or better than

existing approaches. It is also shown that our surface recon-

struction results are superior to all other systems. Figure 10

shows the reconstruction error of all evaluated systems on kt0.

We also present a number of qualitative results on datasets

captured in a handheld manner demonstrating system versa-

tility. Statistics for each dataset are listed in Table 5. The

Copy dataset contains a comprehensive scan of a photocopy-

ing room with many local loop closures and a global loop clo-

sure at one point to resolve global consistency. This dataset

was made available courtesy of Zhou and Koltun (2013).
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Dataset RMSE (i) Frame Drops (ii) Depth Fill (iii) ω̄ (
◦
/s)

freiburg1 360 0.108m 1.6% 94.5% 41.600

freiburg1 desk 0.020m 3.1% 90.8% 23.327

freiburg1 desk2 0.048m 3.2% 90.1% 29.308

freiburg1 floor — 11.8% 98.0% 15.071

freiburg1 plant 0.022m 1.3% 91.9% 27.891

freiburg1 room 0.068m 0.7% 90.6% 29.882

freiburg1 rpy 0.025m 4.0% 94.7% 50.147

freiburg1 teddy 0.083m 1.3% 93.4% 21.320

freiburg1 xyz 0.011m 0.8% 93.7% 8.920

freiburg2 360 hemisphere — 2.2% 77.3% 20.569

freiburg2 360 kidnap — 1.2% 73.6% 13.425

freiburg2 coke — 2.0% 80.9% 9.432

freiburg2 desk 0.071m 2.5% 92.2% 6.338

freiburg2 dishes — 2.2% 82.5% 9.666

freiburg2 large no loop — 1.8% 82.5% 15.090

freiburg2 large with loop — 2.4% 75.1% 17.211

freiburg2 metallic sphere — 1.7% 85.2% 10.422

freiburg2 metallic sphere2 — 1.2% 75.2% 12.946

freiburg2 pioneer 360 — 61.6% 79.8% 12.053

freiburg2 pioneer slam — 52.7% 84.0% 13.379

freiburg2 pioneer slam2 — 52.3% 90.6% 12.209

freiburg2 pioneer slam3 — 32.3% 78.7% 12.339

freiburg2 rpy 0.015m 2.1% 78.3% 5.774

freiburg2 xyz 0.011m 1.5% 84.2% 1.716

freiburg3 cabinet — 4.1% 97.8% 10.248

freiburg3 large cabinet 0.099m 3.9% 85.2% 8.747

freiburg3 long office household 0.017m 4.9% 94.4% 10.188

freiburg3 nostructure notexture far — 4.7% 99.9% 2.712

freiburg3 nostructure notexture near withloop — 3.9% 99.4% 11.241

freiburg3 nostructure texture far 0.074m 4.0% 99.6% 2.890

freiburg3 nostructure texture near withloop 0.016m 3.5% 99.4% 7.430

freiburg3 structure notexture far 0.030m 3.5% 98.1% 4.000

freiburg3 structure notexture near 0.021m 3.7% 98.2% 6.247

freiburg3 structure texture far 0.013m 4.7% 97.6% 4.323

freiburg3 structure texture near 0.015m 4.9% 97.2% 7.677

freiburg3 teddy 0.049m 4.2% 80.3% 20.410

Table 2: ATE RMSE on the evaluated static scene datasets of Sturm et al. (2012), using per-sequence best parameters. We have included a number of

statistics for each dataset which aid in the understanding of limited performance on some sequences; (i) although the capturing device provides RGB-D

frames at 30Hz, a number of sequences are missing a certain amount of frames that were simply never recorded. This hinders dense tracking methods which

rely on a continuous sequence of frames to satisfy the projective data association assumption made; (ii) on several sequences the capturing device was pointed

at an area of the scene outside of the range of valid depths for the device (either too near or too far), resulting in a low overall percentage of valid depth pixels

throughout the dataset. The depth fill is the percentage of pixels which have valid depth values across the entire sequence; (iii) a high average angular velocity

(given in degrees per second) for the ground truth trajectory implies that at certain points in a sequence successive frames were very far apart in orientation,

again challenging the assumption made by projective data association used in dense tracking. We have omitted the results for sequences on which our system

failed because of a loss of the camera pose estimate due these three phenomena.
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Figure 10: Orthogonal frontal view heat maps showing reconstruction error on the kt0 dataset. Points more than 0.1m from ground truth have been removed

for visualisation purposes.

(i) (ii) (iii)

Figure 11: Qualitative datasets; (i) a comprehensive scan of a copy room; (ii) a loopy large scan of a computer lab; (iii) a comprehensive scan of a twin bed

hotel room (note that the actual room is not rectilinear). To view small details we recommend using the digital zoom function in a PDF reader.
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System kt0 kt1 kt2 kt3

DVO SLAM 0.032m 0.061m 0.119m 0.053m

RGB-D SLAM 0.044m 0.032m 0.031m 0.167m

MRSMap 0.061m 0.140m 0.098m 0.248m

Kintinuous 0.011m 0.008m 0.009m 0.150m

Frame-to-model 0.098m 0.007m 0.011m 0.107m

ElasticFusion 0.007m 0.007m 0.008m 0.028m

Table 4: Comparison of surface reconstruction accuracy results on the evalu-

ated synthetic datasets of Handa et al. (2014). Quantities shown are the mean

distances from each point to the nearest surface in the ground truth 3D model.

Name (Fig.) Copy (11i) Lab (11ii) Hotel (11iii) Office (1)

Frames 5490 6533 7725 5000

Surfels 4.4×10
6

3.5×10
6

4.1×10
6

4.8×10
6

Map size (m) 5×3×2 8×6×2 8×4×2 3×3×2

Graph nodes 351 282 328 386

Fern frames 582 651 325 583

Local loops 15 13 11 17

Global loops 1 4 1 0

Table 5: Statistics on qualitative datasets.

The Lab dataset contains a very loopy trajectory around a

large office environment with many global and local loop clo-

sures. The Hotel dataset follows a comprehensive scan of

a non-rectilinear hotel room with many local loop closures

and a single global loop closure to resolve final model con-

sistency. Finally the Office dataset contains an extensive scan

of a complete office with many local loop closures avoiding

the need for any global loop closures for model consistency.

We recommend viewing of our accompanying videos to more

clearly visualise and understand the capabilities of our ap-

proach (https://youtu.be/XySrhZpODYs, https:

//youtu.be/-dz_VauPjEU).

8.3 Computational Performance

To analyse the computational performance of the system we

provide a plot of the average frame processing time across

the Hotel sequence. The test platform was a desktop PC with

an Intel Core i7-4930K CPU at 3.4GHz, 32GB of RAM and

an nVidia GeForce GTX 780 Ti GPU with 3GB of memory.

As shown in Figure 12 the execution time of the system in-

creases with the number of surfels in the map, with an overall

average of 31ms per frame scaling to a peak average of 45ms

implying a worst case processing frequency of 22Hz. This

is well within the widely accepted minimum frequencies for

fused dense SLAM algorithms (Whelan et al. (2012); Salas-

Moreno et al. (2014); Chen et al. (2013); Keller et al. (2013)),

and as shown in our qualitative results more than adequate for

real-time operation. The current limitation in terms of compu-

tational performance is the cost of rendering predicted colour

and depth images for tracking, where at around 8 million sur-

fels the full pipeline begins to take more than 66ms to execute

(15Hz), which manifests itself in requiring camera motion to

slow down in order for tracking to succeed.
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Figure 12: Per-frame processing time and number of surfels in the Hotel

dataset.

9 Light Detection Evaluation

In this section we present both quantitative and qualitative re-

sults on our light source estimation pipeline, demonstrating its

usefulness in both camera pose estimation and realistic scene

rendering for AR.

9.1 Specular Predictive Photometric Tracking

Given the discrete light source detection process outlined in

Section 7.2 it is possible to augment the rendered colour im-

age prediction of the model used for photometric tracking

(previously referred to as Ĉat−1 in Equation 8) with specu-

lar highlights according to any detected light sources in the

scene. However, given the enormous complexity in model-

ing light sources accurately enough to perform strong predic-

tions, we found in this work it was most beneficial to simply

mask out pixels believed to be under the effect of a specu-

lar light source reflection rather than use a possibly incor-

rect photometric prediction for tracking. In addition to this,

as in previous work we assume tracking operates over a nar-

row baseline (Newcombe et al. (2011b)). However, like im-

age areas on occlusion boundaries, for a correct prediction re-

rendering the predicted specular reflection would be required

during each iteration of the Gauss-Newton optimisation used

to solve Equation 9. This can be quite costly and we find

that conservatively masking out potentially specular pixels in

the optimisation achieves promising results in the direction of

utilising the light source information directly in the tracking

pipeline.

In these experiments, we simulate a simple point light

source specular reflection for each detected light source in the

scene and mask out all pixels in the predicted colour image

which may have their appearance altered under reflection of

those light sources. We modified and augmented a number

of sequences from the noiseless ICL-NUIM dataset of Handa

et al. (2014) with specular light sources in order to generate

ground truth data. We were unable to evaluate the light source

estimation algorithm on the RGB-D benchmark of Sturm et al.

(2012) as the automatic exposure and white balance camera

functions were enabled during capture, which violates the as-
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(i) (ii) (iii)

Figure 13: Example of predicting the effect of specular lighting on model views for tracking; (i) the real image of the scene from the current camera pose; (ii)

a predicted view of the scene taking into account the specular reflections of any light sources that have been detected and masked out; (iii) a predicted view

of the scene without any predicted specular light source reflection masking. Not only is this prediction worse for tracking, but it runs the risk of smearing the

moving specular reflection captured in the raw data into the diffuse estimated colour of the surface over time.

Prediction kt0 kt1 kt2

Diffuse 0.02974m 0.04791m 0.08085m

Masked 0.00385m 0.03760m 0.03453m

Table 6: Comparison of ATE RMSE on our augmented ICL-NUIM dataset

for diffuse predictive rendering and specular predictive masked rendering tak-

ing detected scene light sources into account. Note that this experiment only

evaluates pure tracking and does not include loop closures in order to perform

a fair comparison.

sumption highlighted in Section 7.1.

Figure 13 shows a comparison between an actual real im-

age including specular highlights and two model renders for

predictive tracking; one with masked out specular highlights

and one without. We quantitatively evaluate the performance

of our photometric camera tracking method on three simu-

lated sequences both with our light source estimation pipeline

running (masking predicted specular highlights) and without.

The results are listed in Table 6. It is evident that including

information hinted at by these specular highlight predictions

to the real-time tracking pipeline has a very positive effect

on pose estimation performance. There is clearly a benefit

to introducing high level reasoning and modeling of the envi-

ronment being captured beyond simple geometric and diffuse

appearance properties. This kind of scene understanding is

also clearly useful for motion planning and active vision sys-

tems in a robotics context. Information on bright light source

positions and directions can be taken into account when de-

ciding where a visual sensor should be oriented, potentially

avoiding saturation or dynamic range issues during real-time

perception.

9.2 Spotlight Synthesis for Augmented Reality

Beyond robotics light source information also has huge bene-

fits in augmented reality applications. Since the inception of

real-time dense scene perception methods physically realistic

virtual object-scene interaction has been possible. There has

been previous work along the lines of approximating a full

hemispherical environment lighting map for a single plane,

which produces convincing re-lighting, shadowing and reflec-

tion effects, although quite constrained in operation (Jachnik

et al. (2012)). In Figures 14 and 15 along with our accompa-

nying video (https://youtu.be/QFDnFjV9YdM), we

show real-time physically interactive augmented reality com-

positing which respects the geometry, occlusion properties,

point-source lighting effects and shadowing of the scenes in

which the sequences take place. Our video also shows a qual-

itative comparison of stability when utilising specular pre-

dictive photometric tracking, as outlined above. We believe

that this initial step towards approximating the scene lightfield

with a discrete set of simply modeled light sources is already

quite compelling and gives a clear indicator of the future di-

rection in which general real-time 3D scene perception must

go beyond dense surface diffuse appearance and geometry.

10 Conclusion

We have presented a novel approach to the problem of

dense visual SLAM that performs time windowed surfel-

based dense data fusion in combination with frame-to-model

tracking and non-rigid deformation. Our main contribution in

this paper is to show that by incorporating many small local

model-to-model loop closures in conjunction with larger scale

global loop closures we are able to stay close to the mode of

the distribution of the map and produce globally consistent re-

constructions in real-time without the use of pose graph opti-

misation or post-processing steps. In our evaluation we show

that the use of frequent non-rigid map deformations improve

both the trajectory estimate of the camera and the surface re-

construction quality. We also demonstrate the effectiveness of

our approach in long scale occasionally looping camera mo-

tions and more loopy comprehensive room scanning trajecto-

ries. In addition to this we have presented a novel method for

detecting multiple discrete point light sources in a scene in
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(i) (ii)

(iii) (iv)

Figure 14: Example AR sequence involving three specular light source detections showing geometry interaction, realistic virtual object specular reflections

and shadowing; (i) here the virtual car can been seen driving up on top of the book, respecting the scene geometry; (ii) specular and shadowing effects which

respect the detected light sources in the scene are evidient; (iii)-(iv) further movement again highlights the geometry and lighting effects that can be rendered

in real-time to augment the scene.
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Figure 15: The reconstructed surfel map showing scene geometry and detected light sources (including estimated directionality and extent) for the AR

sequence shown in Figure 14.
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real-time. This secondary contribution demonstrates its use-

fulness both in camera tracking performance improvements

and realistic AR rendering effects. In future work we wish to

address the problem of map scalability beyond whole rooms,

investigate the problem of dense globally consistent SLAM

as t → ∞ and a more complete method for modeling scene

lighting configurations.
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