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Abstract

We propose a method to estimate the bidirectional re-

flectance distribution function (BRDF) and shading of com-

plete scenes under static illumination given the 3D scene

geometry and a corresponding high dynamic range (HDR)

video. By splitting the BRDF into its diffuse and non-diffuse

parts we solve the estimation of each component separately.

For the diffuse component, we sample the incident illumina-

tion at each point in the scene using Monte Carlo ray trac-

ing, allowing us to factor the captured surface color into

albedo and shading. We then use a novel ray tracing-based

optimization strategy to estimate the non-diffuse parameters

of the BRDF. In a variety of experiments, we demonstrate

that our method efficiently generates realistic copies of the

observed scenes.

1. Introduction

Recovering a faithful copy of our world is of funda-

mental importance for virtual, augmented and mixed real-

ity (VR, AR, MR). VR devices immerse the user into a

virtual world to fulfill certain tasks, e.g. medical, educa-

tional or gaming purposes. They rely on a representation of

the scene in terms of surface geometry, material properties

and lighting. Since hand-crafting such virtual world models

is tedious, there is an increasing demand for methods that

can automatically reconstruct real world environments. Yet,

their practical value critically depends on the realism of the

virtual world. In MR and AR, faithful scene representations

are required to render virtual objects that have the correct

physical interactions and visual appearance with respect to

their surroundings. While the reconstruction of surface ge-

ometry is quite mature, the estimation of reflectance and

lighting of a scene remains a difficult open challenge – in

particular, if we want to estimate these properties straight

from an input video. This work brings the virtual and real

world closer together enabling users to immerse in a realis-

tic virtual reality and experience believable augmentations.
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Figure 1. Reconstruction results: Given an input video and a geo-

metric reconstruction of the scene, we deduce the scene’s shading,

albedo and specular properties, thereby allowing for a more faith-

ful reconstruction. The insets show details of two specular objects.

Given a comprehensive HDR video of an environment and

its corresponding reconstructed 3D mesh, we claim three

novel contributions:

• An efficient method to leverage HDR textures for esti-

mating albedo and shading per surface element.

• A procedure to calculate ideal target frames for each

object in the scene within the estimation process.

• A method to estimate the non-diffuse BRDF using grid

search with nested least-squares optimization.

On a broad range of real-world datasets, we demonstrate

that this enables faithful reconstructions, plausible scene re-

lighting and visually accurate rendering of virtual objects

that can take the surrounding scene appearance and geome-

try into account.



2. Background and related work

In the following we recall the rendering equation [18]

and discuss efforts to invert it in order to recover realistic

models of the observed world.

2.1. The rendering equation

The rendering equation [18] is a useful and popular tool

to render images given the scenes properties of material,

illumination and geometry. It models the light transport as:

Lo(x, ωo)=Le(x, ωo)+

∫

H2

fr(x, ω, ωo)L(x, ω)〈ω,n〉dω (1)

where theLo is the observed radiance at x ∈ R
3 in direction

ωo ∈ S
2, with S

2 being the 3D unit sphere. Le(x, ωo) de-

scribes the amount of light emitted at x in direction ωo by a

light source. The integral over the hemisphere H2 oriented

by the surface normal n ∈ S
2 positioned at x, integrates

along all incident directions ω. The integrand describes the

interaction between material, light and geometry, where the

BRDF fr models the reflectance properties of a variety of

materials. The radiance L(x, ω) describes the amount of

incoming light at x from direction ω. The geometric term

〈ω,n〉 models the spread of incident illumination over the

surface at a given angle, where 〈·, ·〉 : R3 × R
3 → R de-

scribes the dot product. Evaluating Eq. (1) can result in high

quality renderings close to real-world images [18, 37], pro-

viding the relation between a captured image and its scene.

To this end we identify for each pixel p ∈ Ω ⊂ R
2 of the

image I : Ω → R
3, the conjugate 3D-point x. And ωo is the

normalized vector pointing from x to p, I(p) = Lo(x, ωo).

2.2. Inverting the rendering equation

Inferring camera and scene properties by inverting the

rendering equation in order to obtain suitable models of the

real world has a long-standing history and is called inverse

rendering [35]. We now discuss the most related work that

tackles the challenging task of material estimation, but refer

to [20] for a comprehensive survey on inverse rendering.

Deep Learning [4, 5, 9, 24, 25, 26, 30, 43, 45, 54] ap-

proaches train a network in an (un-)supervised manner and

demonstrate impressive results in the context of photore-

alistic scene reconstruction. Yet, these techniques applied

in the single image domain, are concerned with single ob-

ject reconstruction, and/or have an implicit scene represen-

tation. This makes it difficult to be compatible with con-

ventional computer graphics assets used for lighting and

physics interactions in full 3D room-scale real-world re-

constructions, thus limiting the applicability of these ap-

proaches to AR/VR/MR applications.

Multi-Shot [1, 3, 4, 9, 11, 13, 21, 22, 26, 23, 27, 29, 30, 31,

33, 40, 42, 52, 53] techniques recover material effects us-

ing multiple images taken from the same or different view-

points. While more observations constrain the resulting op-

timization problem better, additional images need to be cap-

tured and the computational burden can limit inference in

terms of memory and runtime. Thus, it is always desirable

to use as few images as possible, while still constraining the

search space of possible solutions enough to find reasonable

estimates. Additionally, many of these approaches have at

best a piece-wise constant material per object if no active

lighting is used.

Active Lighting [1, 9, 11, 13, 16, 15, 21, 22, 31, 36, 38,

42, 53] frameworks estimate reflectance properties similar

to multi-shot techniques, but additionally require different

(calibrated) illumination for each image. This limits the

practicability of these approaches as a light source has to

be actively controlled. It is known that these approaches

are well-posed in the Lambertian setting under general il-

lumination [6] and a point-wise solution of the albedo can

be found as it is much more constrained. Considering view-

dependent material effects adds additional complexity to the

problem and even if illumination and geometry is known,

recovering non-diffuse reflectance is an open challenge and

additional assumptions have to be made [14].

HDR Imagery [1, 11, 21, 22, 29, 52, 53] shows great us-

age in photometric approaches as they tend to relate scene

properties to linear radiance data instead of non-linearly

mapped pixel intensities [12] – a relation which, if violated

due to no camera calibration, can result in undesired de-

terioration [12, 19]. Interestingly, despite its potential and

desirable properties the literature applying HDR data in the

context of photorealistic reconstruction of room-sized en-

vironments is fairly sparse [29, 52]. This might be due to

the different orders of magnitude involved when using HDR

data – an effect non-existent with 8-bit images as higher ra-

diance values are usually clamped to 255. This can cause

standard algorithms, like running average of pixel intensi-

ties to not work as expected.

In contrast to the above approaches, the method presented

here does not rely on large amounts of diverse training data,

nor on active lighting and works in complete room-sized 3D

environments. We effectively incorporate the advantages of

HDR imagery and a tailored ray tracing framework to re-

cover the BRDF for every object in the scene. More specifi-

cally, we can recover a spatially varying albedo, and present

a principled way to leverage HDR video for automated tar-

get frame selection which allows us to estimate non-diffuse

material effects from a single view per object. To the best of

our knowledge this is the first work utilizing HDR data with

consistent full 3D room-scale reconstructions, which is able

to recover BRDF parameters of every object in the scene

using a single automatically computed target frame. In the

context of AR/VR/MR, this enables the faithful recovery

of large-scale scenes that support conventional physical as

well as light interaction between real and virtual objects.



3. Recovering complex reflectance and shading

Given a mesh-based 3D reconstruction of the scene ge-

ometry, an HDR RGB sequence of frames covering that ge-

ometry and their corresponding poses, we first reconstruct

and estimate the lit diffuse HDR texture (Section 3.2). This

then builds the foundation for the albedo and shading esti-

mation using only the textured geometry (Section 3.3), and,

given an object segmentation, the estimation of the specu-

lar material parameters per object (Section 3.4). See Algo-

rithm 1 for an overview of our proposed framework. Note

that our input assumptions differ only in the HDR data com-

pared to other approaches like [3], allowing us to cover the

dynamic range of the scene from the darkest to the bright-

est areas. We follow [12] to transform the captured data

to floating point linear units directly proportional to the in-

coming radiance and discuss in Section 3.2 and 3.4.1 arising

issues and how to effectively leverage that to our advantage.

Algorithm 1 Overview of our proposed algorithm

Input: HDR data, poses, geometry, object segmentation

Output: ρ̃, {ϕi, ψi}i=1,...,M for allM objects in the scene

Calculate lit diffuse HDR texture (Sec. 3.2):

1: Ld = runningMedian(HDR data, poses, geometry)

Calculate shading S and albedo ρ̃ (Sec. 3.3):

2: S = calcShading(geometry, Ld)

3: ρ̃ = Ld

S

For each object: Target frame calculation and rough-

ness ϕi and specular ψi estimation (Sec. 3.4):

4: TFs = calcTargetFrames(HDR data, poses, geometry,

object segmentation)

5: for each object i in the scene do

6: TF = TFs[i] (i-th object’s target frame)

7: ϕi, ψi = estimateNondiffuse(TF, geometry, Ld)

3.1. Microfacet BRDF Model

We restrict our focus to isotropic, dielectric (non-

metallic), and opaque (not translucent/transparent) objects

only. A desirable property for a BRDF is an additive separa-

tion into its diffuse and non-diffuse component, as it allows

splitting the problem of BRDF parameter estimation into

two separate, easier to solve problems as we will describe

later. We will thus use a dichromatic BRDF [44],

fr (x, ω, ωo) = fd (x) + fnd (x, ω, ωo) (2)

and identify the diffuse part as fd (x) =
ρ(x)
π

=: ρ̃ (x), and

call ρ̃ the (scaled) albedo, where ρ : Σ → [0, 1]3, given

a reconstructed surface Σ ⊂ R
3. The non-diffuse com-

ponent is described using the Torrance-Sparrow microfacet

model [10, 49] with a GGX distribution [46, 50, 51] and

Running Mean Running Approximated Median

Figure 2. The mean textures (left) suffer from occluding edge

bleeding and baked in specularities, our approximated median

(right) is able to estimate textures without such artifacts.

Schlick’s Fresnel approximation [41] (dropping the x, ω, ωo

dependencies for brevity),

fnd (ϕ, ψ) =G (ϕ)D (ϕ)F (ψ) , (3)

G (ϕ) =G1 (〈n, ω〉 , ϕ̃) ·G1 (〈n, ωo〉 , ϕ̃) , (4)

D (ϕ) =
ϕ̂2

π
(

1 + (ϕ̂2 − 1) 〈n, h〉
2
)2 , (5)

F (ψ) =ψ̃ +
(

1− ψ̃
)

(1− 〈ω, h〉)
5
, (6)

with G1 (x, y) = (x+
√

x2 + y2 − x2y2)−1, the half vec-

tor h = ω+ωo

‖ω+ωo‖
, and the nondiffuse parameters roughness

ϕ : Σ → [0, 1], and specular ψ : Σ → [0, 1]. Following [7],

we apply three reparameterisations to increase robustness:

ϕ̃ = (ϕ2 + 1
2 )

2 to have a more perceptually linear change

in roughness, ϕ̂ = max (0.001, ϕ) for numerical stability,

and ψ̃ = 0.08ψ causing the refractive index to cover most

common materials. Plugging (2) into (1), assuming non-

emissivity (Le ≡ 0) and splitting the integral, we get

Lo (x, ωo) = Ld (x) + Lnd (x, ωo) , (7)

Ld (x) := fd (x;ρ)

∫

H2

L (x, ω) 〈ω,n〉 dω, (8)

Lnd (x, ωo) :=

∫

H2

fnd (x,ω,ωo;ϕ,ψ)L (x,ω)〈ω,n〉 dω. (9)

3.2. Lit diffuse HDR texture estimation

We estimate the lit diffuse HDR texture by projecting the

video frames onto the surface geometry. Using low dynamic

range 8-bit data, weighted averaging [8, 32] typically yields

reasonable results as outliers are smoothed out. However,

this is not the case with HDR data due to its large range

of values, resulting in a number of visual artifacts caused

by two main phenomena: errors in the geometry and bright

lights along with specular reflections of those, see Fig. 2

left. One popular approach to diminish these artifacts is to

calculate the median rather than a running mean [39]. How-

ever, this is extremely expensive since it requires storing all

RGB values. To overcome this we estimate an approxima-

tion of the median of each color channel using the P-Square



algorithm [17]1. Figure 2 shows a comparison between the

running mean and our running approximated median. De-

spite errors in the reconstruction, the floor is no longer cor-

rupted and specular reflections on the table have been re-

moved. Mathematically speaking, the BRDF inscribed in

the texture should have no view-dependent effects and can

thus be assumed to represent the albedo. Nevertheless, one

should not identify the median texture with the albedo itself

as it still contains global light transport and geometric in-

formation. Thus, we assume that the median texture can be

identified as the diffuse radiance, Ld and we call it the lit

diffuse HDR texture.

3.3. Albedo and shading estimation

We are now going to effectively leverage the information

that the HDR texture’s intensity is proportional to the true

radiance, which would not be possible with textures where

intensities, especially at light sources, are truncated to 8-

bits. This allows us to estimate the captured shading S at

each surface point x ∈ Σ of the scene,

S (x) :=

∫

H2

L (x, ω) 〈ω,n〉 dω. (10)

The shading describes the sum of the radiance L (x, ω)
gathered from the scene weighted by the geometric scale

factor 〈ω,n〉. We estimate the shading S via Monte-Carlo

ray tracing, a stochastic approach to estimate complex in-

tegrals such as Eq. (10). We cast rays at each scene’s sur-

face point x ∈ Σ on the hemisphere H2, where the cho-

sen ray directions ω follow a distribution accounting for the

scalar product in Eq. (10) (cosine weighted) [37]. For each

cast ray (x, ω) we read the lit diffuse HDR texture at the

closest hit point x̃ and interpret it as the incident radiance,

L (x, ω) = Ld (x̃). Summing up all cosine weighted sam-

ples of incident radiance gives an estimate for the shading S

for each surface point x. One can interpret this procedure as

sampling each surface point’s environment map. Note that

the captured lit diffuse HDR texture already includes the ef-

fects of global light transport in the diffuse scene [52], thus

we can perform the proposed shading estimation in paral-

lel for all surface points x ∈ Σ independently. Finally, as

the captured lit diffuse HDR texture is the product of the

scaled albedo and the shading, see Eq. (8), we can recover

the albedo by dividing the captured lit diffuse HDR texture

by the estimated shading.

Fig. 3 shows shading estimates for different numbers of

ray samples and how increasing sample size de-noises the

result. Our approach to recover shading and albedo does

not account for emissive radiance Le, although the lit dif-

fuse HDR textures inherently carries that information. Nev-

ertheless, we do not think of this as a major disadvantage,

1In the interest of brevity we refer to the original paper for a full de-

scription of the algorithm and its performance relative to an exact median.

Lit diffuse HDR texture Ld 100 samples

1000 samples 10000 samples

Figure 3. Estimated shading S for different numbers of ray sam-

ples. Note how more samples remove noise from the shading.

as for emissive objects, the impact of the intrinsic radiance

(what we see when looking at a light source which is turned

off) is negligible compared to its emissive radiance.

3.4. Specular appearance estimation

Given an estimate of the lit diffuse scene Ld (x) at each

surface point, we can estimate the non-diffuse BRDF pa-

rameters ψ and ϕ per object. We assume that for all M

objects in the scene, each object’s view-dependent effects

can be described with two parameters, {
(

ψi, ϕi
)

}i=1,...,M ,

resulting in two constant, non-diffuse BRDF parameters per

object. We first discuss how we automatically select an indi-

vidual target frame per object given an object segmentation

before utilizing these in the proposed optimization scheme.

3.4.1 Target frames

Path tracing a single image is expensive and time-

consuming, which is why we would like to use as few im-

ages for inference as possible. Additionally, the so called

target frames (TF) used to estimate each object’s non-

diffuse material parameters should have two attributes:

• A1, high chance of specular highlights caused by di-

rect illumination, and

• A2 the captured observation from the HDR video con-

sists mostly of valid pixels, i.e., the RGB values are

not over- or under-saturated2.

These requirements in combination with the assumption

that a single object’s specular appearance can be described

with two parameters allows us to use only one TF per ob-

ject. In order to find TFs fulfilling A1, we assume the object

of interest is a perfect mirror and we render only the pix-

els where light sources can be seen in the mirrored surface.

2Over- or under-saturated observations do not depend linearly on the

incoming radiance [12], hence we omit them to avoid corrupting the result.
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A1 ✓ ✗ (no highlights) ✓

A2 ✗ (under-saturated) ✓ ✓

TF ✗ ✗ ✓

Figure 4. Example of good and bad target frame (TF) candidates

for the object “Red Wall” based on the attributes A1 and A2.

While for the first two columns, either the observation is under-

saturated (intensity increased by a factor of 10 for visualization

purposes) or there are no specular highlights on the object, the

third column shows a TF satisfying both A1 and A2.

Note that this is the only step in our framework that requires

information about position of emitting light sources. Con-

cerning A2, the HDR capture cycles through three different

exposures in subsequent frames. This leads to three differ-

ent exposures at roughly the same viewpoint, allowing us

to find at least one frame with enough valid pixels. Exam-

ple frames and their attributes A1 and A2 are visualized in

Fig. 4. We iterate through the video and for each of it’s ob-

jects set the TF as the frame with most pixels in A1 ∩ A2.

3.4.2 Optimization

Given the i-th object’s target frame Ii we describe it as the

composition of its diffuse and non-diffuse component, Iid
and Iind respectively,

Ii (p) = Iid (p) + Iind

(

p;ϕi, ψi
)

. (11)

We assume Ii (the observation) and Iid (rendered image us-

ing the lit diffuse HDR texture) to be given so that the only

varying quantity is Iind. Due to view-dependent appearance

effects, full evaluation, i.e., dense sampling of ω of the in-

tegral in Eq. (9) is challenging. We therefore follow a multi

importance sampling strategy [37]. For further technical de-

tails see the supplementary material. We assume that single

bounce ray tracing is enough for a reasonable approxima-

tion of the scene [52] keeping computational expense prac-

tical. We have a good estimation of the lit diffuse scene

thanks to the HDR median textures Ld. When adding view-

dependent effects such as reflections, inter-reflections start

to have impact on the final result. Nevertheless, a specu-

lar lobe illuminating the scene is assumed to be negligible

compared to an emissive light source when integrating over

the whole hemisphere, as our target frames are chosen such

that specular reflections are mainly caused by direct illumi-

nation (A1). Even in the presence of mirror like objects our

target frames were not corrupted enough with indirect illu-

mination that this would cause the system to fail. In order

to determine the non-diffuse properties of the BRDF we can

now formulate an optimization problem in X i := (ϕi, ψi)
per object i, i.e., we want to solve for i = 1, . . . ,M ,

min
X i∈[0,1]2

L(X i) :=
∑

p∈Ωi

∥

∥r
(

p;X i
)
∥

∥

2

2
. (12)

‖·‖2 is the L2-norm and r a point-wise RGB-color residual

at each pixel p in the image domain Ωi ⊂ Ω showing only

the i-th object,

r
(

p;X i
)

= Ii (p)−
(

Iid (p) + Ii
nd

(

p;X i
))

. (13)

Note that due to the single bounce assumption, the M opti-

mization problems in (12) are disjoint, which enables solv-

ing each problem separately and in parallel.

Optimization problems like Eq. (12) are difficult to solve

due to the non-convexity in the roughness parameter ϕi, cp.

Eqs. (4) and (5). We now present a simple and fast numer-

ical scheme that can tackle the inherent complexity by ex-

ploiting the closed parameter domain [0, 1]2 of X i and the

fact that the BRDF fnd depends only linearly on the specu-

lar parameter ψi, cp. Eq. (6). We perform a two-level grid

search approach (in ϕi) with nested least squares optimiza-

tion (in ψi). That is, at the l-th level we set the roughness

ϕi = ϕi
lk

from a discrete set of sample points equidistantly

spread across an interval [al, bl],

ϕi
lk

∈ {al +
k · (bl − al)

K − 1
| k = 0, . . . ,K − 1} (14)

For each ϕi
lk

we calculate the best specular value ψi
lk

by

solving the linear least squares problem in Eq. (12) in closed

form. For the resulting K tuples {X i
lk
}k=0,...,K−1 at the l-

th level we evaluate L(X i
lk
) and set the minimizer of the l-th

level as the one with lowest cost. We choose K = 11, as

we found this gives a dense enough sampling of the interval

[al, bl] ∀l. At the first level we set a0 = 0, b0 = 1, while

the second level’s interval is initialized with the direct left

and right neighbours of the minimizer’s roughness value,

or the roughness value itself in case it lies on the boundary

of the sampling interval. Note that this approach always

terminates after K·“number of levels”= 22 iterations, but

is not guaranteed to find a global minimizer – a challenging

task in non-convex optimization. In our evaluation we did

not observe any failed results that were undoubtedly caused

by an unsuccessful optimization.
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Figure 5. Error maps and numbers of normalized RMSE

(NRMSE) of our approach to estimate albedo and shading on two

differently illuminated scans A and B. We compare the two esti-

mated albedos ρ̃A and ρ̃B , and how well the ground truth (SA ·ρ̃A

and SB ·ρ̃B) can be predicted with the other scan’s albedo (SA ·ρ̃B

and SB · ρ̃A). See Figure 6 for the images used to calculate the

shown error maps.

4. Experiments

Given each surface point’s albedo and shading, as well

as each object’s specular appearance, we can now quanti-

tatively and qualitatively evaluate the effectiveness of our

proposed approach. We use the Replica dataset [48] for the

evaluation as this provides appropriate input data: recon-

structed meshes of the complete scene, HDR video (pro-

vided by the authors of [48]), per frame camera poses, and

semantic object instance information.

For quantitative validation of the albedo and shading es-

timation we use a dataset captured by ourselves with con-

trol over illumination and the objects in the scene, see the

supplementary material for details on the capturing process.

The room has in total four globe lights and three LED panels

as light sources, which differ in wavelength and emission.

The two scans differ in their respective lighting: For the first

scan, all four globe lights and one LED panel were turned

on (we call this Scan/Reconstruction A). For the second

scan, only two LED panels (different from the one in Scan

A) were turned on (we call this Scan/Reconstruction B).

Note that we calculate the set of lit diffuse HDR textures

(Section 3.2) a priori for each dataset, which runs on the

GPU at ≈8−9Hz for RGB images of resolution 1224×1024.

All experiments are carried out on a machine with an Intel

Xeon 3.70GHz and an NVIDIA GeForce RTX 2080. We

encourage the reader to view our supplementary material

for further results.

4.1. Albedo and shading validation

We use Reconstructions A and B as well as scenes from

the Replica dataset [48] to evaluate the albedo and shad-

ing described in Section 3.3. Using NVidia’s OptiX en-

gine [34], we cast 10000 rays per texel from each corre-

sponding surface element to get a de-noised estimate of the

shading and albedo. This process takes ∼10min.

Quantitative evaluation is carried out on the Reconstruc-

tions A and B. The reconstructed albedos should ideally be

equal as lighting cues are explained by the shading S. Fig-
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Figure 6. Numerical evaluation of our approach to estimate albedo

and shading on two differently illuminated scans A and B. As can

be seen visually, illumination information is nicely explained in

the estimated shading, while both albedos look almost identical

and the predicted scene is close to ground truth.

ure 5 shows the normalized RMSE (NRMSE) for the whole

scene verifying that there is only little, i.e. less than 10%
difference between the two albedos. Additionally, a numer-

ical evaluation between the ground truth and predicted re-

constructions is carried out. To this end, we compare ρ̃A·SA

vs. ρ̃B · SA to see how well reconstruction A can be pre-

dicted, while ρ̃B ·SB vs. ρ̃A ·SB validates the prediction of

reconstruction B. An error well below 5% for both tests

shows that we can faithfully modify diffuse scenes with

novel lighting conditions. Figure 6 shows the estimated

albedos, shadings, ground truth and their predictions. While

overall both albedo estimates are visually almost identical,

few artifacts are visible and show how our system performs

under violated assumptions of 1) remaining view-dependent

effects in the lit diffuse HDR texture (e.g. on the door), and

2) inaccuracies in the reconstructed geometry (e.g. the ob-

jects on the table). Nevertheless, as numerically and quali-
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Figure 7. We deploy our albedo and shading estimation on chal-

lenging real-world “Office” data sets of the Replica data set [48]

and are able to estimate per-texel albedo and shading information,

using the reconstructed mesh and lit diffuse HDR texture only.

More results can be found the in the supplementary material.

Mean L2 error Mean FLIP error

Figure 8. Numerical comparison on Office 1 [48] between a purely

diffuse reconstruction with the ground truth (blue line) and the

proposed reconstruction with the ground truth (orange). The left

shows the numerical mean L2 metric, while the right visualises

the perceptual FLIP [2] metric. More results can be found in the

supplementary material.

tatively shown, errors in our albedo estimation are still tol-

erable to plausibly relight diffuse scenes, i.e. errors between

the two albedo estimates are easier to detect than errors be-

tween predicted relighting and ground truth.

Qualitative evaluation is carried out on the real-world

Replica dataset [48] and can be seen in Figure 7. When

our assumptions are met, we can recover an albedo estimate

free of illumination effects, as these are contained in the

corresponding shading estimate. Furthermore, we are able

to tackle the challenging task of removing cast shadows of

objects, e.g., chairs, sofas and tables. Note that in Office 0

the table under the display has a stand right below it on the

floor which can be mistaken as a cast shadow in the albedo

estimate, but the corresponding shading estimate shows it

has actually been successfully removed.

4.2. Specular appearance estimation validation

For quantitative and qualitative comparison, we de-

ploy our approach described in Section 3.4 on the Replica

dataset [48]; casting 200 rays per each pixel’s correspond-

ing surface element using OptiX [34]. The dataset consists

of ≈50−150 objects per scene; each of different size, geom-

etry and material. Estimating an object’s non-diffuse BRDF

parameters takes ≈238sec on the GPU.

Quantitative evaluation is concerned with how much a re-

construction improves compared to the diffuse baseline, i.e.

a reconstruction using the lit diffuse HDR textures. We in-

fer non-diffuse material parameters from a single image per

object. More specifically, to validate consistency across dif-

ferent views we test our predictions against unseen view-

points of the ground truth observation, and compare this to

the diffuse baseline. To this end we use two different error

metrics, the numerical L2-loss, as well as the recently in-

troduced perceptual FLIP [2] evaluator. FLIP has a partic-

ular focus on the differences between rendered images and

corresponding ground truths via approximating the differ-

ence perceived by humans when alternating between two

images. Figure 8 shows the per frame numerical mean

L2 metric (left), and the perceptual mean FLIP [2] metric

(right) for a video sequence of Office 1 [48] containing 1389
frames, where 1363 frames are novel viewpoints and only

26 frames were used as target frames. Both graphs show

that on average the error decreases when incorporating the

proposed view-dependent BRDF estimates. Note that, be-

sides only small differences between the orange and blue

graph (as specular highlights are only sparsely distributed

across an image, if they appear at all), the improvements

(“orange<blue”) are of much larger magnitude than the de-

terioration (“blue<orange”). That means that if our pro-

posed rendering degrades the ground truth more than the

diffuse baseline, it is only slightly worse, while our pro-

posed rendering considerably improves realism compared

to the diffuse baseline.

Qualitative evaluation and comparison to related work

is carried out over multiple real-world datasets of [48], see

Figure 9. The state-of-the-art approach closest related to

ours is [3], which is a full path tracing (2 bounces) approach

to estimate the scene’s material properties. We chose the

hyper-parameters as recommended by the authors using 1
sample to estimate the image and 511 for the derivative and

ran [3] until convergence which took 12−24hrs, depend-

ing on the data set. A side-by-side comparison between the

diffuse, the state-of-the-art [3] and the proposed reconstruc-

tion along with the ground truth and the corresponding er-

ror maps shows the superiority of our approach. While the

overall trend of estimated material parameters of [3] seems

correct, Monte Carlo noise is dominating the resulting re-

construction which heavily deteriorates the rendered im-

ages. Our method can successfully reconstruct subtle spec-

ular effects such as the specular lobe on the wall in Office

0. It also models stronger reflections, e.g., the TV screen

in Office 4 and even mirror like reflections, see the glass

window in Office 3. Inaccuracies in geometry can affect the

result (Office 1, largest deterioration according to Fig. 8),

although the tablet glass screen seems to be well estimated.
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Figure 9. Side-by-side comparisons between the diffuse baseline, a path tracing approach [3] and the proposed reconstruction along with

the ground truth and the corresponding L2 errors and FLIP evaluator [2]. More results can be found in the supplementary material.

Figure 10. Complete synthetic relighting of different data sets (Of-

fice 0, Office 2 of [48]) with virtually placed objects [47, 28]. More

results can be found in the supplementary material.

4.3. Relighting

Finally, having the full BRDF at hand (albedo, specular,

and roughness), we can now do a complete visually accu-

rate rendering of the full scene under new synthetic lighting

with additional virtual objects, see Figure 10. To this end,

we deploy a path tracing engine with four bounces. The

bunny and statue added to the reconstructions of the Office

0 and Office 2 scenes [48] look faithful and realistic as they

take the overall scene’s appearance into account resulting in

consistent shadowing and material effects.

4.4. Limitations and future work

We assume geometry to be given, thus deterioration can

have negative impact on the result (Figure 9 Office 1) –

a standard limitation for inverse rendering under known

geometry [3, 13, 52]. In our tests, we did not experi-

ence inter-reflections to cause our system to fail, as target

frames are chosen to maximize specular reflections based

on direct illumination. However, we expect the presence

of strong inter-reflections to limit the performance of our

framework, due to the single bounce assumption. In the fu-

ture, we aim to overcome some limitations with the lit dif-

fuse HDR texture, as it can suffer from remaining baked-in

view-dependent effects. While modest corruptions are tol-

erable and still enable plausible relighting (Section 4.1), we

assume the system to not work as assumed when artifacts

dominate the median texture.

5. Conclusion

We introduced a method that estimates the BRDF and

shading properties of complete 3D scenes from HDR im-

agery. We are able to recover per surface element albedo

and shading using only the reconstructed geometry and

HDR textures. We provide a scheme to automatically cal-

culate target frames per object; these are then used to es-

timate non-diffuse material parameters per object. Numer-

ous experiments on a range of challenging real-world HDR

data sets validate the efficiency of our approach compared to

the current state-of-the-art, allowing us to create reconstruc-

tions that are almost indistinguishable from the real-world.
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