
Aria Digital Twin: A New Benchmark Dataset for Egocentric 3D Machine

Perception

Xiaqing Pan1, Nicholas Charron1, Yongqian Yang1, Scott Peters1, Thomas Whelan1, Chen Kong1,

Omkar Parkhi1, Richard Newcombe1, and Carl Yuheng Ren1

1Meta Reality Labs

{xiaqingp, nickcharron, yongqian, scpeters, twhelan, chenk, omkar,

newcombe, carlren}@meta.com

Abstract

We introduce the Aria Digital Twin (ADT) - an egocen-

tric dataset captured using Aria glasses with extensive ob-

ject, environment, and human level ground truth. This ADT

release contains 200 sequences of real-world activities con-

ducted by Aria wearers in two real indoor scenes with 398

object instances (324 stationary and 74 dynamic). Each

sequence consists of: a) raw data of two monochrome cam-

era streams, one RGB camera stream, two IMU streams; b)

complete sensor calibration; c) ground truth data including

continuous 6-degree-of-freedom (6DoF) poses of the Aria

devices, object 6DoF poses, 3D eye gaze vectors, 3D hu-

man poses, 2D image segmentations, image depth maps;

and d) photo-realistic synthetic renderings. To the best of

our knowledge, there is no existing egocentric dataset with

a level of accuracy, photo-realism and comprehensiveness

comparable to ADT. By contributing ADT to the research

community, our mission is to set a new standard for evalu-

ation in the egocentric machine perception domain, which

includes very challenging research problems such as 3D ob-

ject detection and tracking, scene reconstruction and un-

derstanding, sim-to-real learning, human pose prediction -

while also inspiring new machine perception tasks for aug-

mented reality (AR) applications. To kick start exploration

of the ADT research use cases, we evaluated several existing

state-of-the-art methods for object detection, segmentation

and image translation tasks that demonstrate the usefulness

of ADT as a benchmarking dataset.

1. Introduction

Egocentric data has become increasingly important to

the machine perception community in the past several years

due to the rapid emergence of AR applications. Such ap-

plications require the co-existence of the real-world space

and a virtual space along with a contextual awareness of

the real surroundings. Complete contextual awareness can-

not be achieved without a full and accurate 3D digitization

of three fundamental elements in the real-world space: hu-

mans, objects and the environment. Every object and en-

vironmental component, including lighting, room structure

and layout, has to be precisely digitized to unlock consis-

tent rendering of the virtual space within the real world.

Dynamic object motion needs to be tracked in 3D to up-

date the state of the space via physical interactions. The

state of the human wearing AR glasses should be estimated

and intersected with the digital space to derive the interac-

tion in both physical and virtual spaces. Achieving all of

this requires solutions to a number of core problems such

as 3D object detection, human pose estimation, and scene

reconstruction, where data is the key component.

Existing datasets that aim at progressing the field of AR

do not focus holistically on the problem space, but rather

on specific sub-problems. A significant amount of progress

in large scale static scene datasets [7, 35, 6] has helped to

advance 3D scene understanding tasks such as static object

detection, scene reconstruction and room layout estimation.

Although the photo-realism of these reconstructed scenes

is continuously improving [36], these datasets lack the mo-

tion of objects introduced by hand interactions that com-

monly occur in egocentric AR scenarios. Object-centric

datasets [1, 41] that include increasingly complex occlu-

sions between objects, also require that objects be station-

ary to facilitate the annotation process. Dynamic object

datasets [11, 12, 15] capture hand-object interaction but

the data is captured in controlled, simplified environments.

Egocentric human motion datasets [30, 44] capture 3D hu-

man poses with annotation of 3D joint positions but with-

out the digitization of the environment. Most importantly,
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(a) Top-down rendering of two spaces with the apartment on the left and the office on the right.

(b) 2D visualization of ground truth projected onto Aria camera sensors. From top to bottom: the RGB, the left monochrome, the right

monochrome camera sensors. From left to right: raw sensor image; photo-realistic synthetic rendering; 3D bounding boxes (cyan for

stationary and red for dynamic objects), 2D bounding boxes, segmentation masks for all object instances; depth map.

Figure 1: An overview of the ADT dataset.

none of the discussed datasets leverage an AR-style sensing

device that captures the unique challenges with egocentric

data such as fast ego motion, sub-optimal viewpoint, low-

power sensing hardware, etc. Although some egocentric

datasets [13, 37, 10] have emerged recently, they present

only either narrative annotation or 2D object annotation

without addressing the challenges in 3D space.

The availability of egocentric data capture devices has

been surging in recent years, e.g., Vuzix Blade, Pupil Labs,

ORDRO EP6, etc. Among them, the popularity of Aria

glasses is quickly growing due to its standard glasses-like

form factor and the full egocentric sensor suite including,



but not limited to, a red-green-blue (RGB) camera, two

monochrome cameras, two eye tracking cameras and two

inertial measurement units (IMUs) which allows users to

tackle a broad spectrum of machine perception tasks in real-

world activities. The availability of Aria data has been ac-

celerated by the recent release of the Aria Pilot Dataset [28].

Motivated by the gap in holistic egocentric 3D data

highlighted above, we have created the Aria Digital Twin

(ADT) dataset to accelerate egocentric machine perception

research for AR applications. This dataset offers 200 se-

quences collected by Aria-wearers performing real-world

activities in two realistic spaces - an apartment and an of-

fice, with a combined total of 350 stationary and 50 dy-

namic object instances. Compared to existing work, each

ADT sequence offers more complete and accurate ground

truth data for the digital space including: device calibra-

tions, device and object 6-degree-of-freedom (6DoF) poses,

human poses, eye gaze vectors, object segmentation, depth

maps and photo-realistic synthetic images. Figure 1a shows

top-down renderings of two spaces, and Figure 1b shows a

2D visualization of all object ground truth projected onto

the Aria camera sensors. Figure 2 shows a snapshot im-

age of the data capturing process and a 3D rendering of the

human ground truth data.

To build this dataset, we reconstructed every object and

the entire environment of the two spaces in a metric, photo-

realistic pipeline. We integrated a motion capture system

with the digitized space and precisely synchronized it with

the Aria glasses to track objects and humans while record-

ing egocentric data in a spatio-temporally aligned environ-

ment. We demonstrate the quality of the 3D reconstruction

via a qualitative evaluation and the accuracy of the object

tracking via a novel quantitative evaluation. We performed

evaluations on several existing state-of-the-art methods for

object detection, segmentation and image translation tasks

to demonstrate the usefulness of ADT when testing AR re-

lated machine perception algorithms. Our contribution is

the establishment of a new standard for both the quality and

comprehensiveness of digitized real-world indoor spaces to

advance fundamental AR research by means of an exem-

plary dataset and methodology for the creation of such a

dataset.

2. Related Work

Several works have been published that only provide

static object 3D poses. Objectron [1] contains object-

centric short videos captured by mobile phones with 6DoF

pose annotations over nine categories of objects for 3D ob-

ject detection tasks. The objects remains stationary and

rapid movement of the camera is avoided. The BOP chal-

lenge [18] is composed of several datasets for 6DoF object

pose estimation. The LM [16] and LM-O [4] datasets pro-

vide 6DoF poses of objects in stationary scenes in the form

Figure 2: Left: A snapshot of the data recording process in

the apartment. Right: A 3D visualization of ground truth

for object bounding boxes and the collector’s body skeleton

in green with eye gaze shown in orange.

of 15 cluttered objects placed on a table top with mark-

ers. T-LESS [17] introduces the challenge of handling tex-

tureless objects in the 3D pose estimation problem. YCB-

V [41] provides RGB-D videos of 21 stationary cluttered

objects by means of a semi-automatic annotation process.

All of the above works ignore human interactions with ob-

jects which limits their utility for many real-world AR prob-

lems.

Another common type of dataset focuses on only dy-

namic object 3D poses. FPHA [11] provides both hand

pose and 6DoF object pose annotation for 25 dynamic mov-

ing objects captured by a shoulder-mounted RGB-D sen-

sor. The object poses are coarsely estimated by a magnetic

sensor placed close to the approximated center of mass.

ECVA [12] and Ho-3D [15] offer 6DoF object pose annota-

tion for dynamic objects in a table mounted RGB-D sensing

setup. TUD-L [18] contains only 3 dynamic objects with

semi-automatically annotated 6DoF pose. Although hand-

object interaction and occlusion are provided, these datasets

have a limited number of objects, and do not have head-

mount capture devices, limiting their relevance to AR-based

machine perception. HOI4D [27] and H2O [21] presented

data captured by a head-mounted RGB-D sensor, annotated

with 2D segmentation and 3D object pose. However, the

level of geometric accuracy for the scene and objects, which

is reconstructed using low fidelity sensors, falls short of that

provided in ADT. Additionally, the absence of static scene

modeling and photo-realistic reconstruction prevents them

from being used for many AR tasks that need to bridge the

real and virtual world gap.

Many works summarized above completely omit discus-

sion of how accurate their ground truth data may or may

not be, and those that have made an attempt, usually use

subjective approaches, or approaches prone to human error

and variability. For example, Objectron [1] compares an-



notations across different annotators to see how much vari-

ability there is in the results. They also only present results

run on a small set of the object types which means other

objects may have very different variability in ground truth

data. Ho-3D [15] does a similar validation procedure where

they manually annotate point clouds from the RGB-D sen-

sors, but this is also prone to human subjectivity error as

well as sensor error since RGB-D sensors have errors on

the order of centimeters.

A number of egocentric video datasets have been re-

cently released that capture realistic activities. EpicK-

itchen [8, 9] and Charades-Ego [34] record a wearer’s

daily indoor activities and annotate the data with action

segments and 2D object bounding boxes. EGTEA [22]

contains eye gaze attention in addition to activity anno-

tation. Ego4D [13] builds a notably large dataset par-

tially composed of audio, 3D meshes of the environment

and eye gaze with multi-camera sensors. TREK-150 [10]

and EgoTracks [37], focusing on hand-object interactions,

are composed of egocentric videos with objects annotated

by their 2D bounding boxes. Annotation in each of the

above mentioned datasets are at 2D image level without

any understanding of the 3D world. Other datasets such as

EgoCap[30] and EgoGlass[44] are proposed to address the

egocentric human pose estimation task. However, the com-

plexity of the environment and interactions with objects are

ignored. Mo2Cap2 [42] and UnrealEgo [2] introduce envi-

ronment complexity but are generated synthetically.

Scene datasets such as SUN-RGB-D [35], ScanNet [7]

and Matterport3D [6], provide reconstructions of large scale

real indoor scenes. Videos of these scenes are typically

recorded using RGB-D cameras. The videos are annotated

with 2D segmentation, 3D object bounding boxes and se-

mantic scene information. Although they provide scene

level ground truth, all objects in the scenes are static and

the capturing device is not egocentric. Their scene digitiza-

tion is also not optimized against reality and hence does not

meet the photo-realism bar. This limits the utility of these

datasets in training systems for the real world. Replica [36]

significantly improves on the reconstruction quality aspect

but is once again not egocentric. Synthetic scene datasets

such as HyperSim [31] and Openrooms [24] gather high-

quality 3D models online and fine-tune the models in post-

processing to create visually convincing scenes. They do

not have a real-world counterpart recordings so the gap be-

tween simulated and real data remains. Furthermore, the

lack of egocentric data in these spaces does not allow re-

searchers to use these for solving AR tasks.

3. Dataset Generation Methodology

Our dataset generation procedure starts by creating a sta-

tionary, photo-realistic digital scene followed by enabling

the tracking of Aria glasses, objects and humans within the

scene.

3.1. Stationary Scene Digitization

Room digitization: Taking the apartment as an exam-

ple, the physical space is first emptied and scanned using

a high-resolution scanner - FARO Focus S-150. The gen-

erated point cloud is then converted to a triangular mesh

by fitting planes based on the room topology. The error

of the meshing process is measured against the raw source

point cloud using a closest-point-to-mesh distance metric,

resulting in a total 50th and 80th percentile (P50 & P80)

error of 0.688mm and 4.68mm respectively. We also re-

construct Physically-Based Rendering (PBR) materials in-

cluding albedo, roughness and metallic maps. Albedo maps

are extracted via photogrammetric reconstruction. Rough-

ness and metallic values are manually assigned to different

portions of the space based on material properties such as

metal, glasses, etc. Each light source in the scene is param-

eterized by intensity, shape and color, and is tuned man-

ually by taking diffuse and chrome spheres as references.

To make sure the reconstructed materials and lighting are

accurate enough to deliver photo-realistic quality, we im-

plement a fully digital rendering using Nvidia’s Omniverse

path tracing software and iteratively tune all of the material

and lighting parameters against a real photographic refer-

ence frame as shown in Figure 3a and 3b.

Object Digitization: The geometry of each object is ac-

quired using the ATOS 5 Bluelight 3D scanner, which pro-

vides geometry data to an industrial standard for manufac-

turing. The material is reconstructed through a photogram-

metry process, similar to the room digitization process, but

in a photo booth setup consisting of a turn table, four LED

panels and three Canon 5D Mark IV cameras with cross-

polarization used to eliminate specularity of the material.

Also similar to the room digitization process, we setup a

real-vs-synthetic comparison to tune the material of the ob-

ject to match the real photo as shown in Figure 3c and 3d.

Layout Digitization: After gathering the 3D models for

the room and objects, we physically furnished the space and

set large furniture pieces to be stationary objects as they

are not typically moved in day-to-day real-world scenarios.

We then perform a new FARO scan of the fully furnished

space, initialize the 6DoF objects poses by manually plac-

ing the 3D models into the point cloud and use Iterative

Closest Point (ICP) [33] to optimize the geometry align-

ment. Similar to the room digitization process, we mon-

itored the quality using the closest-point-to-mesh distance

metric and achieved 4.67mm at P50 and 20.51mm at P80

representing the combined geometrical error from object

digital models and the layout for the entire scene.



(a) Real photo of a room. (b) Rendering of a room.

(c) Real photo of a birdhouse. (d) Rendering of a birdhouse.

Figure 3: Real photos and their synthetic counterparts used

to optimize the empty room digitization and individual ob-

ject digitizations.

3.2. Pose Generation

We track 3D poses of three dynamic components in an

ADT space: objects, Aria glasses and human (Aria wear-

ers). All of them are expressed in a single Scene frame

of reference for all sequences captured in the same ADT

space, namely, FS . This allows us to plot object, device and

human poses from multiple captures collected at different

time frames or across different devices, in the same coor-

dinate space. For simplicity, we make FS the same frame

of reference as the one used in the stationary scene digi-

tization process explained above so the 3D poses for sta-

tionary objects are determined without an additional con-

version. Figure 4 illustrates an example configuration with

one dynamic object (drawn as a cube), one Aria device and

two example Optitrack cameras. Figure 4 also shows all

the relevant frames of reference in a single ADT space, as

well as the system measurements used to provide the final

pose estimates. Note that since the final data contains all

poses relative to the Scene frame, all Optitrack frames are

removed from the final data. Our pose generation process

relies on the Optitrack motion capture system, which pro-

vides high rate sub-millimeter level precision poses [3], to

track dynamic object and Aria poses.

Dynamic Object Pose: Each object k, tracked by Opti-

track, has its own coordinate frame that defines the rigid

body (RB) of that object. A RB is created by a set of

markers rigidly attached to the object and its 3D pose in

the Optitrack’s frame, FOT , is represented as TOT ORBk

1.

For an object k, our goal is to calculate TS OMk
ex-

pressed in Eqn. 1, where FOM is the object model’s frame

set during scene digitization. To calculate the pose be-

tween each dynamic object’s RB frame and its model frame

(TORBk OMk
), we scan each object twice, one with markers

installed and the other without. We then register two gen-

erated meshes using point-set registration. To convert coor-

dinates in FOT to FS , we create a scene RB for each ADT

space by installing markers on the walls, followed by com-

putation of TS OT by aligning the scan-extracted 3D marker

positions to the Optitrack measured scene RB points using

a point-set registration method similar to ICP [33].

TS OMk
=TS OT × TOT ORBk

× TORBk OMk
(1)

Aria Device Pose: Similar to the dynamic object pose

generation process, we use Optitrack to track each Aria de-

vice’s RB frame, FARB , relative to FOT , and then com-

pute the pose of Aria’s device frame, FD, relative to the FS

(TS ARB). We start with estimating the SE(3) transform

from one IMU frame, FAI0 , to FARB (TARB AI0 ). This

is estimated by collecting a dataset where we excited the

device about all 6DoF for approximately one minute while

Optitrack is tracking the RB. We fit the IMU data to a trajec-

tory, and solve for the TARB AI0 that best aligns this IMU

trajectory to Optitrack’s measured Aria RB trajectory. We

further calibrate each Aria’s extrinsics and intrinsics includ-

ing: 1) SE(3) transforms between all sensor frames and the

device frame, 2) calibrated camera models using Kannala

Brandt [38] and fisheye radial-tangental thin prism [40] pa-

rameterizations, and 3) calibrated linear rectification mod-

els for both accelerometers and gyroscopes.

TS AI0 =TS OT × TOT ARB × TARB AI0 (2)

Equally important to device calibration is Optitrack-Aria

time synchronization. We employ a continuous synchro-

nization strategy based on the Society of Motion Picture

and Television Engineer’s SMPTE timecode, a widely used

standard for synchronized timing between audio and video

captures in the motion pictures industry. Our timecode solu-

tion uses a set of UltraSync One devices made by Timecode

Systems which synchronizes our Optitrack machine to all

Aria devices, achieving a measured average accuracy of less

than 10 microseconds according to our own Aria-Optitrack

specific tests.

Human Pose: To track a person during data collec-

tion, we use the Biomechanic57 template provided by Op-

1
TB A is a special Euclidean group (SE(3)) transformation matrix that

transforms coordinate frame A to coordinate frame B, expressed in frame

B.



Figure 4: ADT Scene System Diagram.

titrack’s Motive software which estimates the human skele-

ton using a set of markers placed at specific locations on the

body. We output the human joints estimated by Motive, as

well as the raw marker positions for researchers to perform

their own body pose estimation. We also use the raw marker

positions to compute 3D body meshes using our proprietary

software.

3.3. System Accuracy

We propose a novel evaluation pipeline for measuring

the total system error in our 3D object pose ground truth

data generation system. We argue that this proof of fidelity

significantly improves the value of our dataset as it gives

researchers, for the first time, additional signal as to the ex-

pected performance of their algorithms built off our data.

Methodology: Since object ground truth data in ADT is

correlated to Aria images, we propose to quantify the ob-

ject pose error, ep, and the reprojection error, er of objects

within view of any of the Aria images. Eqn. 3 describes the

reprojection error of an ith point from object k projected

into the image plane of camera j using the object pose and

calibrated camera model. We denote T̂ as the measured ob-

ject pose, T as the true object pose, π as the camera projec-

tion model which maps R3 −→ R
2, κ as the calibrated intrin-

sic parameters, and finally P i
OMk

is the position of marker i

expressed in the model frame of object k. Eqn. 4 describes

the pose error for each kth object in each camera j. Since

ep in Eqn. 4 is an SE(3) transformation between the true and

measured frames, we extract the translation and rotation er-

rors as scalar values using the L2 norm of the translation

and the magnitude of the angle value from an Axis-Angle

rotation representation.

erk,j,i
= π(T̂Cj OMk

×P i
OMk

, κ)−π(T̂Cj OMk
×pi, κ) (3)

epk,j
= T̂Cj OMk

× [TCj OMk
]
−1

(4)

In Eqns. 3 & 4, T̂Cj OMk
is known from Eqns. 1 & 2,

therefore the only unknowns are the true object poses

TCj OMk
. To compute the true object poses relative to Aria

images, we propose labeling Optitrack markers in Aria im-

ages, and finding the object pose that minimises reprojec-

tion error between estimated marker projections and labeled

pixels. Since we have precise measurements of the object

pose from the ground truth results, we can create a non-

linear optimizer initialized with values close to the true val-

ues to ensure a high likelihood of convergence to a global

minimum. We therefore define our objective function, Φ,

as shown in Eqn. 5, where Udi
is a 2 × 1 vector of labeled

marker pixels. We minimize Φ to solve for the object pose

using a Levenberg-Marquardt optimizer with a Huber Loss

function. Eqn. 5 shows the objective function for object k,

camera j, and at a specific Aria frame time.

ΦCj ,OMk
(TCj OMk

) =

I∑

i=1

[Udi
−π(TCj OMk

×P i
OMk

, κ)]

(5)

Results: The validation dataset consists of a recording

for each dynamic object used in ADT. To minimize sources

of error due to marker labeling in our proposed validation

methodology, we hold the objects within arms length of

Aria during data capture. Since all pose data is captured

from Optitrack cameras, the system error is independent of

the object distance away from the camera, therefore collect-

ing validation data of far away objects would provide no

additional benefit. We collect such validation sequences in

both ADT spaces, with multiple Aria devices, where the

Aria and the objects are both moving at similar rates as

would be expected in the regular dataset releases. We then

run approximately 10 frames of each object through our val-

idation pipeline. Table 1 shows a summary of the final sys-

tem accuracy results. The results show average errors of

6.78 pixels (measured with Aria RGB images at 1408x1408

resolution, 110 deg field of view), 1.29 deg and 6.83 mm for

the measured reprojection error, rotation error, and transla-

tion error, respectively. It is important to note that measured

reprojection error is larger than should be expected for reg-

ular datasets since we only extract measurements when the

object is close to the Aria camera, resulting in a higher than

average reprojection error in pixel units. We also include

the resulting optimized reprojection error, which is the re-

projection error after optimizing for the real object pose to

prove that our methodology generates accurate real poses.

3.4. Data Annotations

In this section, we will describe how the remaining

ground truth data is derived from the raw Aria sensor data



Measured Optimized Rot Trans

Proj[pixel] Proj[pixel] [deg] [mm]

Average 6.78 0.56 1.29 6.83

Median 6.00 0.46 0.91 5.18

Table 1: System accuracy results for all dynamic objects.

and digital scene models along with the poses of 3D objects,

Aria glasses and human bodies.

As described in Section 3.2, for every frame captured

by the Aria device we have the poses of all objects as well

as the cameras and wearer within the scene. Coupled with

the calibration parameters, this completes a full generative

model that can be used to render a fully synthetic equivalent

for every captured frame, as shown in Figure 3. We leverage

a custom shader2 that instead of rendering object texture,

renders the unique object integer IDs and metric depth per-

pixel, for per-frame instance-level segmentation and depth

respectively. We then directly calculate the 2D axis-aligned

bounding boxes of each object instance in each image based

on the segmentation image from the above process. This

process results in ground truth 2D segmentations, depth

maps, and 2D bounding boxes for each image frame. The

dynamic object-to-object occlusion is automatically taken

care of in this process. Figure 5 shows an example of such

cases. We also apply the same process to human-to-object

occlusion cases using the approximated body mesh.

Furthermore, we provide eye gaze estimates using Aria

eye tracking camera images collected at a rate of 30Hz.

Each pair of eye tracking images is processed using our pro-

prietary eye tracking software to produce a per frame gaze

direction vector. We then compute the ray depth by finding

the intersection with the scene objects.

4. Dataset Content

The ADT dataset was recorded in two spaces: an apart-

ment and an office environment. The apartment is com-

posed of a living room, kitchen, dining room and bedroom,

whereas the office space is a single room with very minimal

office furniture. The apartment has 281 unique stationary

objects and the office room has 15 unique stationary objects.

Given some objects have multiple instances that may differ

slightly, the apartment has a total of 324 stationary object

instances and the office room has 20 stationary object in-

stances. In addition, there are 74 single-instance dynamic

objects shared between two spaces.

Strong emphasis was put on the realness of the ADT

spaces and the diversity of objects so that we could collect

data in plausible real-life scenarios instead of contrived lab-

oratory situations. We generated a list of common activities

2A shader is a small program that runs per-pixel during a typical graph-

ics rasterization routine.

Figure 5: Occlusion between the chair and the table is ac-

counted for in the ground truth segmentation and 2D bound-

ing box.

Figure 6: Number of unique object instances for the top 15

categories following the COCO definition.

AP-box AP-Mask

FPN 21.36 19.81

VIT-B 11.42 11.64

Table 2: AP-box and AP-Mask (in %) for the 2D object

detection and image segmentation tasks on the ADT dataset.

in these two spaces under the envisaged setting and selected

appropriate objects for these activities. Each object is anno-

tated with its category. The histogram of the top 15 object

categories is shown in Figure 6 following the category defi-

nition from the COCO [26] dataset.

We release 200 sequences in total with 150 sequences

in the apartment and 50 sequences in the office room. We

designed 5 single-person activities and 3 dual-person activ-

ities in the apartment. The single-person activities are room

decoration, meal preparation, work, object examination and

room cleaning. The dual-person activities include party-

ing, room cleaning and dining table cleaning. Every activ-

ity has 10 to 50 sequences which captures an abundance of

variation in the collectors’ motion and object interactions.

For the office dataset, we include object examination as the

single-person activity.



5. Benchmarking

Having created a richly annotated dataset, we perform

an evaluation of various state-of-the-art methods for AR re-

lated tasks including 2D object detection, 2D image seg-

mentation, 3D object detection and image to image transla-

tion. With these experiments, we show that our dataset is

well suited for evaluating important perception tasks while

also aiming at inspiring new machine perception use cases.

5.1. 2D Object Detection and Image Segmentation

We select two state-of-the-art methods based on their

performance on the MS-COCO [26] and LVIS [14]

datasets: the Feature Pyramid Network (FPN) [25], a

seminal work using hierarchical backbones; and the VIT-

Det [23], a transformer-based non-hierarchical backbone

framework. Both methods are tested on rectified Aria RGB

images to maintain the consistency with their models pre-

trained on MS-COCO. To perform the evaluation, we map

ADT objects into relevant categories in the MS-COCO tax-

onomy. We adopt the box average precision (AP-Box)

and mask average precision (AP-Mask) defined in COCO

evaluation protocol [26]. We aggregate the results for

all frames in each sequence and then average them across

all ADT sequences. The evaluation results, shown in Ta-

ble 2, highlight the domain gap between models trained

on MS-COCO, a popular large-scale training dataset, and

real world egocentric data present in the ADT. This poor

performance may be attributed to the fast ego motion and

sub-optimal viewpoint in the ADT data, which was also ob-

served by TREK-150 [10] for the 2D object tracking task

on egocentric videos.

5.2. 3D Object Detection

We evaluate two state-of-the-art 3D object detection

methods, Total3D [29] and Cube R-CNN [5], pre-trained

on ScanNet [7] and Omni3D [5], respectively. Both meth-

ods are tested on rectified Aria RGB images similar to the

tasks in Section 5.1. Since Total3D requires 2D bounding

box input, we select MaskRCNN as its 2D detector for a

fair comparison. Similar to Omni3D, we adopt average pre-

cision (AP) as the metric. We compute the AP across all

sequences covering 7 object categories3 and 1.6 million GT

3D bounding boxes in total, with a confidence threshold of

0.2 and IoU threshold at 0.25. The AP numbers of the top

five categories are reported in Table 3. The results indicate

the similar challenges to the tasks in Section 5.1. Addition-

ally, we observe that the monocular sensor input, required

by both Total3D and Cube R-CNN, often yield wrong depth

for object 3D poses that can be potentially improved by us-

ing Aria’s multi-camera sensors.

3The common categories between COCO2017, NYU and Omni3D are

television, book, refrigerator, sofa, bed, chair, table.

chair bed table fridge sofa

Cube R-CNN 3.72 2.947 2.796 2.601 1.252

Total3D 0.847 0.630 2.228 0.048 1.298

Table 3: AP (in %) of top 5 categories for the 3D object

detection task.

PSNR ↑ SSIM ↑ LPIPS ↓
SyntheticADT 16.383 0.456 0.270

Pix2Pix 23.442 0.674 0.162

TSIT 21.885 0.617 0.161

LDM 24.218 0.660 0.126

Table 4: Image-to-Image translation benchmarking.

Figure 7: An example of the domain transfer task. From left

to right: synthetic RGB (source), LDM, real RGB (target).

5.3. Image to Image Translation

Given our capability of rendering a synthetic twin for

each ADT sequence, we explore the opportunity of clos-

ing the synthetic-to-real domain gap using image to image

translation methods. We use ADT synthetic-real paired im-

ages to train four state-of-the-art methods; Pix2Pix [19],

TSIT [20], and LDM [32]. The methods are trained on

43 sequences and evaluated on 102 unseen sequences. We

benchmark the synthetic to real image translation perfor-

mance by quantifying pixel-level distance with peak signal-

to-noise ratio (PSNR), structural similarity (SSIM) [39]

metrics, and a perceptual-level distance metric with the per-

ceptual similarity metric (LPIPS) [43]. Results are pre-

sented in Table 4, while Figure 7 shows the qualitative re-

sults of an example frame.

6. Conclusion

We introduced ADT, the most comprehensive egocen-

tric dataset available to date. ADT includes 200 sequences

captured with the sensor-rich Aria glasses in two fully dig-

itized spaces: an apartment and an office. We described the

state-of-the-art digitization process used to achieve photo-

realism allowing for synthetic-real twins of each sequence.

We described the precise ground truth generation procedure



for object/Aria 6DoF poses, human poses and eye gazing,

with an in-depth analysis of the total system accuracy. We

then demonstrated the usefulness of the dataset by bench-

marking important AR-related machine perception tasks in-

cluding object detection, segmentation, and image transla-

tion. Overall, ADT pushes the boundaries of high quality,

comprehensive egocentric datasets, unlocking new research

opportunities for the community that would not have been

possible previously.
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7. Supplementary Material

In this section, we dive deep into the implementation of

the system accuracy measurement and more detailed results

of it. We perform more qualitative and quantitative analyses

on the 2D object detection, image segmentation and 3D ob-

ject detection tasks. Furthermore, we introduce another im-

portant use case of the ADT dataset that can quantitatively

evaluate a manual 3D bounding box annotation pipeline be-

fore it is applied to large-scale egocentric data.

7.1. System Accuracy

We provide additional information and figures in this

section to better describe the methodology. We also pro-

vide additional tables with results for the reader to better

understand the data statistics and how the accuracy of the

system depends on different factors.

Figures 8 and 9 illustrate the system accuracy analysis on

an exemplar frame. Figure 8 shows a portion of a zoomed in

RGB image where a wooden spoon is being moved in by an

Aria wearer. As described in Section 3.3, we take this image

and manually label the centers of each marker. The system

accuracy estimation pipeline then estimated the object pose

relative to the image which best aligns the projection of the

3D markers to the hand labels. Figure 9 shows the final re-

sults after the optimization described in Section 3.3. The

green crosses are the manual labels; the red crosses are the

marker reprojections onto the image plane given all system

measurements at the capture time for this frame; and the

blue crosses are the reprojections of markers after applying

the optimized object pose using Eqn.5 in Section 3.3. The

misalignment between the green crosses and the red crosses

indicates the error of the object pose. The alignment be-

tween the green crosses and the blue crosses confirms that

the estimation of the true object poses is correct.

Table 6 shows the system accuracy statistics for each of

the two scenes. The accuracy in the office is slightly bet-

ter than the accuracy in the Apartment. We expect the root

cause to be the higher ceilings in the apartment, where the

motion capture cameras are installed, yielding a slightly

worse tracking accuracy. Table 5 shows the system ac-

curacy measurement of 32 dynamic objects averaged on a

per-object basis. The total system error comes from the 3D

object reconstruction, motion capture system, Aria device

poses and Aria device calibration.

7.2. Performance Analysis on 2D Object Detection
and Image Segmentation

The performance of the state-of-the-art models, namely

FPN and VIT-Det, for 2D object detection and image seg-

mentation tasks on the ADT dataset is significantly lower

than their performance on the COCO dataset. We expect

this discrepancy is largely due to the domain difference

Figure 8: Cropped version of example Aria image used for

system accuracy tests.

Figure 9: Cropped version of example Aria image used for

system accuracy tests with results. Red: system’s estimate

of where the markers should project. Green: hand labels of

where the markers are located in the image. Blue: system

estimate of where the markers should be after optimizing

for the true object relative pose.

between these two datasets, which is consistent with the

findings of [10]. Despite the rectification of the Aria fish-

eye RGB images to bring ADT closer to the distribution of

COCO, the egocentric nature of the data still remains a chal-



Object Name Measurement Translation Rotation Reprojection

Count Error [mm] Error [deg] Error[pixel]

BlackCeramicBowl 10 3.05 0.66 5.05

Donut B 11 3.61 1.06 4.84

MuffinPan 10 3.64 0.59 5.45

RedClock 10 3.72 1.03 4.19

DecorativeBoxHexLarge 12 3.77 1.05 5.05

CoffeeCan 2 10 4.06 0.66 5.43

Mortar 11 4.19 0.74 6.45

ChoppingBoard 10 4.25 0.49 5.23

BlackCeramicDishLarge 10 4.31 0.71 5.26

WoodenFork 13 4.53 1.65 6.71

BirdhouseToy 2 17 4.77 1.11 4.55

BambooPlate 10 4.82 0.67 7.34

BirdHouseToy 12 5.08 0.72 7.53

Orange A 14 5.22 2.28 8.19

ToothBrushHolder 12 5.32 1.66 7.24

CakeMocha A 15 5.62 0.69 6.14

WoodenSpoon 10 5.85 2.02 6.42

WoodenBowl 10 5.85 0.74 6.53

BlackPictureFrame 13 6.00 1.16 8.73

BlackTablet 7 6.19 1.11 6.69

BlackCeramicMug 10 6.53 1.69 6.59

BookDeepLearning 11 6.56 0.96 10.31

WoodenBoxSmall 12 6.73 1.28 8.83

Flask 14 7.17 1.49 5.71

GreenDecorationTall 10 8.02 1.37 8.81

BlackRoundTable 11 8.43 0.65 5.72

Cracker 10 8.49 2.25 7.20

BlackKitchenChair 9 12.24 0.79 5.66

WhiteChair 6 12.35 0.77 6.83

Jam 14 12.57 1.52 7.32

Cereal 9 16.29 2.18 11.82

DinoToy 10 25.39 4.65 7.25

Table 5: Mean system accuracy results for select objects ranked by the translation error.

Error Apartment Office

Object translation [mm] 6.94 4.48

Object rotation [deg] 1.3 1.04

Reprojection Measured [pixels] 6.9 4.18

Reprojection Optimized [pixels] 0.56 0.47

Table 6: Mean system accuracy results, split by scene loca-

tion.

lenge for these algorithms. Table 7 shows the per-category

mAP. As can be seen from the table, large furniture, appli-

ances categories such as couch, chair, refrigerator are typi-

cally easier for the detectors to detect in these videos while

their performance is poor on object categories such as pot-

ted plant, mouse, remote etc. Though this can be attributed

to the scale of the objects present in the videos, it also high-

lights the challenges of building a real world index of ev-

eryday objects from in the wild recordings. Furthermore,

in a qualitative analysis, Figure 10 show the performance

of both detectors along with the ground truth. FPN shows

better performance detecting large objects and objects un-

der viewpoint variance. Although VIT-Det seems to be bet-

ter at detecting small objects compared to FPN, its overall

inferior performance to FPN suggests a possible mismatch

between the training scale and the sizes of the ADT images

at the inference stage.



Figure 10: Each row is an example of the comparison among the ground-truth, FPN 2D detection result and VIT-Det 2D

detection result. All three examples shows that FPN tends to detect larger objects better than that of VIT-Det, such as the

dining table in the first and second example, and the sofa and armchairs in the third example. FPN also shows promising

robustness results under view point variance such as the dining table in the second example and the leftmost armchair in the

third example. In contrast, VIT-Det seems to be better at detecting smaller objects such as the bottles on the shelf behind the

dining table in the first example and the fork in the second example.

7.3. Performance Analysis of 3D Object Detection

The 3D object detection performance of Cube-RCNN

and Total3d is significantly lower on the ADT dataset. We

therefore conduct more analyses on the failure cases to en-

lighten the challenges of 3D object detection research. Our

observations include two major failure cases: 1) 2D object

detection failure, 2) 3D pose prediction failure. Since we

analyse 2D object detection failures in Section 7.2, we will

focus on 3D pose prediction failures in this section. Fig-

ure 11a shows a typical failure case of 3D pose prediction.



Category FPN FPN VIT-Det VIT-Det

Box Seg Box Seg

Frisbee 18.55 21.10 7.51 6.80

Bottle 2.91 3.03 1.28 1.32

Cup 5.67 5.64 4.56 4.83

Fork 8.12 2.85 4.25 1.13

Knife 14.50 10.58 10.82 7.93

Spoon 14.20 6.24 7.07 3.78

Bowl 17.81 17.41 7.23 7.53

Banana 16.87 12.73 8.25 6.32

Apple 21.64 24.03 12.31 14.03

Sandwich 14.15 10.94 8.88 11.41

Orange 19.84 21.80 9.87 10.80

Carrot 37.08 53.02 38.84 29.75

Donut 3.93 4.57 2.29 2.54

Cake 10.25 12.52 9.21 10.84

Chair 34.38 17.44 20.80 9.58

Couch 49.77 49.87 27.82 32.20

Potted Plant 0.51 0.48 0.40 0.38

Bed 7.29 2.42 6.34 3.61

Dining Table 25.02 7.63 2.37 0.75

TV 24.73 29.65 19.10 23.76

Laptop 12.66 12.78 2.30 2.61

Mouse 1.11 0.98 0.20 0.17

Remote 1.47 0.30 1.82 0.54

Keyboard 4.01 3.31 0.44 0.30

Oven 0.05 0.01 0.61 0.37

Toaster 0.09 0.11 2.22 2.54

Refrigerator 48.47 48.45 42.89 43.63

Book 10.12 9.23 3.40 2.83

Clock 34.33 34.97 32.21 33.37

Vase 0.34 0.28 0.22 0.12

Scissors 7.52 0.14 10.92 0.33

Table 7: Per-category 2D detection and segmentation mean

mAP computed across all videos in the dataset. Large fur-

niture and appliances are easier to detect for the detectors

than the smaller objects like remotes. This indicates the

challenges in the constructing real world index of everyday

objects.

Cube R-CNN roughly localizes the 3D position of eight

chairs but fails in predicting 3D poses accurately enough

to pass the IoU threshold of 0.25.

Additionally, we observed frequent failure cases with the

depth estimation which is a fundamental limitation of 3D

detection models based on single image inputs, since 3D

data is challenging to infer from a single 2D image. Fig-

ure 11b and Figure 11c show two failure examples for To-

tal3D and Cube R-CNN, respectively. The reprojected 3D

bounding boxes fit well on the 2D images. However as ev-

Sofa Photo Frame Chair

Center Prediction (m) 0.296 0.162 0.041

Rotation (deg) 3.869 1.952 1.553

Relative Scale 0.15 0.27 0.10

Table 8: Benchmarking of the manual annotations. It shows

error in manually annotated objects measured against the

accurate ground truth provided by the ADT. Smaller objects

are difficult to annotate with accuracy as can be seen from

the higher relative scale error of the photo frames.

ident from the 3D visualizations, the predicted poses are

significantly erroneous when compared to the ground truth.

This problem can be potentially solved by a more advanced

3D object detector using multi-camera sensors from Aria.

7.4. Comparison with Manual 3D Bounding Box
Annotation

Accurate 3D bounding boxes in the ADT ground truth

dataset can be leveraged to benchmark the accuracy of a

video-based manual annotation pipeline. To set up the eval-

uation, we select 20 randomly sampled videos (10% of the

total videos) from the dataset for manual annotation of 3D

bounding boxes using objects from 10 categories. Figure 12

shows examples of the manual annotations. We evaluate

each manual bounding box annotation of an object by com-

puting the difference from the 6DoF ground truth pose in

ADT, including translation, rotation and scale errors. The

mean translation error is 0.329 meters; the mean rotation

error is 4.29 deg and the mean relative scale error is 0.32.

We show the evaluation results on three example categories

in Table 8.

The experiment above introduces a distinct advantage for

testing a semi-automatic annotation pipeline and for train-

ing annotators with continuous, quantified and visualized

feedback before creating large-scale tasks. Visualizations

such as those shown in Figure 12 can act as a quick refer-

ence for educating annotation teams on the common failure

modes and patterns.



(a) A failure example of Cube R-CNN on predicting 3D poses of chairs.

(b) A failure example of Total3d on predicting the 3D pose of a TV object.

(c) A failure example of Total3d on predicting the 3D pose of a book object.

Figure 11: From left to right: 3D object detection in red bounding boxes; ground truth bounding boxes in green for the target

object and in gray for other objects; predicted 3D bounding boxes from a top down view; predicted 3D bounding boxes from

a side view.

Figure 12: Examples of the manual annotation. Small and thin objects are typically more difficult to manually annotate com-

pared to large and bulky objects. The error margin for annotating a photo frame is much smaller as compared to annotating

bigger furniture objects such as the sofa and bed. Typically annotating the depth becomes a challenging task and is often the

main cause of the error. The ADT dataset allows for an accurate estimate of these errors as shown in table 8


