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Fig. 1: The Replica dataset consists of 18 high resolution and high dynamic range (HDR) textured reconstructions with

semantic class and instance segmentation as well as planar mirror and glass reflectors.

Abstract— We introduce Replica, a dataset of 18 highly
photo-realistic 3D indoor scene reconstructions at room and
building scale. Each scene consists of a dense mesh, high-
resolution high-dynamic-range (HDR) textures, per-primitive
semantic class and instance information, and planar mirror
and glass reflectors. The goal of Replica is to enable machine
learning (ML) research that relies on visually, geometrically,
and semantically realistic generative models of the world – for
instance, egocentric computer vision, semantic segmentation
in 2D and 3D, geometric inference, and the development
of embodied agents (virtual robots) performing navigation,

instruction following, and question answering. Due to the high
level of realism of the renderings from Replica, there is hope
that ML systems trained on Replica may transfer directly to
real world image and video data. Together with the data, we are
releasing a minimal C++ SDK as a starting point for working
with the Replica dataset. In addition, Replica is ‘Habitat-
compatible’, i.e. can be natively used with AI Habitat [24] for
training and testing embodied agents.



I. INTRODUCTION

If the organism carries a “small scale model” of external reality
and of its own possible actions within its head, it is able to
try out various alternatives, conclude which is the best of them,
react to future situations before they arise, utilize the knowledge
of past events in dealing with the present and future, and in every
way to react in a much fuller, safer, and more competent manner
to the emergencies that face it.

Kenneth Craik [7] via Sutton and Barto [26]

Replicating real physical spaces in their full fidelity in a

digital form is a longstanding goal across multiple areas in

science and engineering. Digitizing real environments has

many future use cases, such as virtual telepresence. The

combination of replicas of real environments with powerful

simulators such as AI Habitat [24] enables scalable ma-

chine learning that may yield models that can be directly

deployed in the real world to perform tasks like embod-

ied navigation [1], instruction following [2], and question

answering [9]. Via parallelization, reality simulators enable

faster-than-realtime and more scalable training of AI agents

in comparison with training real robots in the wild. Addition-

ally, simulation from Replica can be leveraged in egocentric

computer vision, semantic segmentation in 2D and 3D and

geometry inference. More realistic replicas lead to more

realistic virtual telepresence, more accurate computation over

them, and a smaller domain gap between simulation and

reality.

Datasets such as ImageNet [16], COCO [19], and VQA [3]

have helped advance research in computer vision and mul-

timodal AI problems. With the Replica dataset we aim to

unlock research into AI agents and assistants that can be

trained in simulation and deployed in the real world. The key

distinction of Replica w.r.t. these image-based static datasets

is that Replica scenes allow for active perception since the

3D assets allow generating views from anywhere inside the

model. This enables the next generation of embodied AI

tasks such as those studied in the AI Habitat platform [24].

Compared to other 3D datasets such as Matterport 3D [6]

and ScanNet [8], Replica achieves significantly higher levels

of realism – we encourage you to take the Replica Turing

Test in Fig. 2. Moreover, Replica introduces high dynamic

range (HDR) textures as well as renderable planar mirror

and glass reflectors as can be seen in the comparison of

raw RGB capture with renders from the model in Fig. 2.

The Replica dataset contains 18 scenes of various real world

environments. As shown in Fig. 1, we provide a dense

mesh, high resolution and HDR textures, semantic class and

instance annotation of each primitive, and glass and mirror

reflectors. The Replica dataset includes a variety of scene

types as well as a large range of object instances from 88

semantic classes to facilitate interesting machine learning

tasks. It also contains 6 scans of the same indoor space

with different furniture configurations that show different

snapshots in time of the same space.

Fig. 2: Replica ‘Turing Test’: One column shows the raw

RGB images captured in these spaces, the other column

shows renderings from Replica (from the same camera pose).

Can you tell which column shows ‘real’ images and which

column shows renderings? Find the answer in Sec. IV.
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Fig. 3: Renderings from comparison datasets to give a qualitative comparison to the Replica dataset. Note that clean geometry

is important to allow rendering clean semantic class and instance segmentation. Geometry and texturing artifacts are noticeable

in both Matterport 3D and ScanNet. Additionally ScanNet scans show a lot of missing surfaces and often do not capture

the full room.
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TABLE I: Comparison of reconstruction-based 3D scene datasets. We estimate color and geometry resolution for each dataset

as the number of pixels and mesh primitives respectively per m
2. Note that for all metrics we used the meshes that were

semantically annotated and report median values.

II. RELATED WORK

Existing 3D datasets can be classified broadly into two

categories: (1) human-generated synthetic scenes based on

CAD models and (2) reconstructions of real environments.

They vary in semantic and visual realism.

A. Synthetic Scenes

SUNCG [25] is a large dataset of synthetic indoor envi-

ronments. However, the scenes lack realistic appearances and

are often semantically overly simplistic. SceneNet [14] is a

synthetic dataset with 57 scenes and 3,699 object instances

which can be automatically varied by sampling objects of

the same class and similar size to replace the base objects in

the 57 scenes. The Stanford Scenes [12] dataset consists of

130 scenes with 1,723 object instances. On the smaller scale

with only 16 scenes but with more realistic appearance is the

RobotriX dataset [13]. The InteriorNet [17] dataset consists

of 22M interior environments created from 1M CAD assets.

The dataset comes with 20M images rendered out from

the environments for SLAM benchmarking and machine

learning. While newer synthetic datasets like InteriorNet are

becoming more and more realistic, they still are not capturing

real spaces with all their imperfections due to use, clutter and

semantic variety.

B. Real Scenes

There exists multiple datasets of 3D reconstructions of

rooms and houses that capture semantically realistic scenes

as shown in the overview Table I. Based on Matter-

port’s indoor scanning system there is the Matterport3D

dataset [6], the Gibson dataset [28], and the Stanford 2D-

3D-S dataset [4], some of which capture hundreds of scenes.

These scales are impressive for reconstruction-based 3D

scene datasets as it takes effort to collect, process, clean up

and semantically annotate real data. The visual quality of

the Matterport-scanner-based datasets is more realistic than

SUNCG but geometry artifacts and lighting problems exist

throughout the datasets, as shown in Fig. 3.

The original Matterport3D [6] dataset consists of 90

houses with 2,056 rooms and 50,811 object instances from

40 semantic classes. Semantic annotation was performed

based on a 3D Felsenszwalb pre-segmentation [11]. This

means the resolution and accuracy of the semantic an-

notation is constrained to the segments extracted by the

Felsenszwalb algorithm, which we found to be prone to

inaccuracy on boundaries between objects. The Stanford 2D-

3D-S dataset [4] contains 6 large-scale reconstructions with

a total of 270 rooms. It is annotated with 13 object classes

and 11 scene categories. The exact method of semantic

annotation is not described except that it is done in 3D.

The Gibson dataset [28] contains 572 buildings and includes

the two aforementioned datasets. Only the meshes from

the Matterport3D and the Stanford 2D-3D-S dataset contain

semantic segmentations.

Beyond Matterport-scanner-based reconstructions, there is

the ScanNet [8] dataset which was obtained by scanning

scenes with an iPad-based RGB-D camera system. It contains

1,513 scenes with more than 19 scene types and a flexible

yet unspecified number of semantic classes. Mapping of

the semantic classes to NYU v2, ModelNet, ShapeNet and

WordNet exists. Semantic annotation was performed based

on a Felsenszwalb segmentation with the same downside of

inaccurate segmentation boundaries as described previously.

Table I shows that while this initial release of Replica is a

smaller dataset, its reconstructions have high color, geometry,

and semantic resolution. Additionally, the Replica dataset

introduces HDR textures and renderable reflectors.

III. DATASET CREATION

To create the Replica reconstructions, we use a custom

built RGB-D capture rig with an IR projector depicted in

Fig. 4. It collects time-aligned raw IMU, RGB, IR and wide-

angle greyscale sensor data. The wide-angle greyscale video



Fig. 4: The data collection rig used to capture the raw data

used to build Replica.

data together with the IMU data is used by an in-house

SLAM system, similar to state-of-the-art systems like [10],

[22], to provide 6 degree of freedom (DoF) poses. We

compute raw depth from the IR video stream given the

IR structured light pattern projected from the rig. Given

the 6 DoF poses from the SLAM system, depth images

are fused into a truncated signed distance function (TSDF)

akin to KinectFusion [23]. Meshes are extracted using the

standard Marching Cubes [20] algorithm, simplified via

Instant Meshes [15] and textured with a PTex-like system [5].

Finally, we extract mirrors and reflective surfaces [27].

HDR textures are obtained by cycling the exposure times

of the RGB texture camera and, using the 6 DoF SLAM

poses, fusing the measured radiance per texel into 16 bit

floating point RGB values. This approach yields an overall

dynamic range of about 85,000:1 which corresponds to more

than 16 f-stops as opposed to the standard vertex mesh colors

and textures of the other datasets which are encoded as 8 bit

RGB values.

A. Mesh and Reflector Fixing

To ensure the highest quality 3D meshes, we manually

fix planar reflective surfaces and small holes where surfaces

were not sufficiently captured during scanning. Reflective

surfaces are defined as planar polygons and can be annotated

in our custom built software tool by specifying the boundary

of the reflector on the mesh. For hole filling we first automat-

ically detect holes by searching for boundary edges that form

closed cycles and hence constitute holes. A human annotator

can then use our tool to select a hole and automatically fill it

using the approach described by Liepa [18]. Specifically, we

use CGAL [21] to triangulate the hole boundary to generate

an initial patch, then refine and smooth the patch. Examples

of patched holes are shown in Fig. 5.

B. Semantic Annotation

Semantic annotation is performed in two steps. First, we

render a set of images from the mesh such that all primitives

of the mesh are observed at least once. These images are then

annotated in parallel using a 2D instance-level masking tool.

After 2D annotation, we fuse the 2D semantic annotations

back onto the mesh using a voting scheme. The 3D annota-

tions are then refined using a superpixel-like segmentation.

This ensures that small holes in the initial fused segmentation

are filled based on neighborhood information. In the second

step we review, refine and correct the fused segmentation

using a 3D annotation tool that in effect allows painting on

the 3D mesh. This step ensures highest annotation quality

since annotations can be refined down to the primitive level.

As part of the semantic annotation we also annotate areas

that need to be anonymized (i.e. blurred or pixelated) to

ensure privacy.

We represent the semantic annotation as a multi-tree or

forest data structure which we call a segmentation forest: At

the bottom level are the individual primitives of the mesh.

The next level connects primitives into larger segments. At

the root level these segments are connected into semantic

object entities. Figure 6 shows a simple example comprised

of a chair and two book instances. As can be seen, the

segmentation forest data structure represents an instance

segmentation of the scene where each tree in the semantic

annotation forest corresponds to a semantic instance. A class

segmentation is obtained by simply rendering all instances

of the same class in the same color. The segmentation forest

data structure is flexible in that it allows connecting semantic

instances in a hierarchical way. Rendering at different levels

of the forest leads to different segmentations of the scene.

IV. DATASET DESCRIPTION

The Replica dataset together with a minimal SDK

are published at the following github repository:

https://github.com/facebookresearch/Replica-Dataset.

As shown in Fig. 7 and 8, the Replica dataset contains 18

different scenes: 6 different setups of the FRL apartment,

5 office rooms, a 2-floor house, 2 multi-room apartment

spaces, a hotel room, and 3 rooms of apartments. The

scenes were selected with an eye towards semantic variety

of the environments as well as their scale. With the 6 FRL

apartment scenes with different setups we introduce a dataset

of scenes taken at different points in time of the same space.

Each Replica scene contains dense geometry, high resolu-

tion HDR textures, reflectors and semantic class and instance

annotation as shown for one of the datasets in Fig. 1. Figure 3

shows renderings from the FRL Apartment dataset for the

different modalities. Note the high fidelity of the semantic

annotations and the accuracy at borders.

As shown in Fig. 9 glass and mirror surface information

is contained in the Replica dataset and can be rendered for

additional realism and photometric accuracy.

In Fig. 2 we show comparisons of the raw RGB image cap-

tured from the data collection rig next to a rendering of the

scene from same pose. Qualitatively, it is hard to tell whether

the left or right frames are the raw captures underscoring the

realism of the Replica reconstructions. Small artifacts and

the fact that there is no motion blur give away that the right

column shows the rendered images. Additionally, the foot of



Fig. 5: Example of holes filled with the mesh fix-up tool. Filled holes are marked red. In these images the textures have

been tonemapped to a low dynamic range to facilitate easier human interpretation for manual touch up.

chair

seg

p9

seg

p1 p4 p5

book

seg

p8 p2

book

seg

p0

Fig. 6: In the proposed segmentation forest data structure,

the root of each tree indicates the semantic object instance.

The mesh primitives from the leaf nodes (denoted “p”) are

connected into segmentation nodes (denoted “seg”) one level

below the roots.

the operator is accidentally captured in the second example

giving another hint that the left column contains the raw

captured images.

Figure 10 shows a histogram over semantic instances

across the dataset. The semantic classes were picked to

capture the variety of objects and surface classes in Replica.

The figure shows that common structural elements such as

“floor”, “wall”, “ceiling” as well as various object types from

“chair” to “book” and small entities such as “wall plug”,

“cup”, and “coaster” are included. While the number of

classes is larger than in several common datasets a mapping

to other class lists is straightforward.

We publish a minimal Replica C++ SDK with the dataset,

that demonstrates how to render the Replica reconstructions.

The SDK may be used to inspect the dataset and as a starting

point for further development. For machine learning applica-



(a) apartment 0 (b) apartment 1 (c) apartment 2

(d) office 0 (e) office 1 (f) office 2

(g) office 3 (h) office 4 (i) room 0

(j) room 1 (k) room 2 (l) hotel 0

Fig. 7: The Replica dataset contains a variety of 12 semantically different reconstructions.



(a) FRL apartment 0 (b) FRL apartment 1 (c) FRL apartment 2

(d) FRL apartment 3 (e) FRL apartment 4 (f) FRL apartment 5

Fig. 8: The Replica dataset contains a set of 6 scenes of the FRL apartment with the contents rearranged mimicking the

same scene at different points in time.

tions we recommend the use of the AI Habitat [24] simulator

which integrates with PyTorch and allows rendering from

Replica directly into PyTorch Tensors for deep learning.

The AI Habitat simulator supports rendering RGB, depth,

semantic instance and semantic class segmentation images

at up to 10k frames per second.

A. Data Organization

Each Replica dataset scene contains the following data:

• mesh.ply: quad mesh encoding the dense surface of

the scene. Each vertex has a color value assigned to it

for low resolution and non-HDR rendering of the scene

(not recommended).

• textures/*: high dynamic range PTex texture files.

• glass.sur: file describing reflectors in the scene.

It contains a list of reflector parameter objects. Each

reflector is described by the transformation from world

coordinates to the reflector plane, a polygon in the

reflector plane, a surface normal and the reflectance

value. A reflectance of 1 signals a mirror and anything

else a partially transparent glass surface.

• semantic.json and semantic.bin: semantic

segmentation of the reconstruction.

• preseg.json and preseg.bin: planar/non-planar

segmentation of the reconstruction.

• habitat: data exported for use with AI Habitat.

– mesh semantic.ply: quad mesh with semantic

instance ids for each primitive. The class of each in-

stance can be looked up in the semantic.json

file in the habitat folder.

– mesh semantic.navmesh: occupancy infor-

mation needed for AI Habitat agent simulation.

– semantic.json: mapping from a seman-

tic instance id stored with every primitive in

mesh semantic.ply to the semantic class

name.

The semantic.json and the preseg.json files rep-

resent a segmentation forest data structure by specifying a

list of nodes with class names, a list of children and a parent

field. Each node has a unique id and is addressed via this

id. The corresponding semantic.bin and preseg.bin

files contain the list of primitive ids corresponding to each

node.

V. CONCLUSION

The Replica dataset sets a new standard for texture,

geometry and semantic resolution as well as quality for

reconstruction-based 3D datasets. It introduces HDR textures

and renderable reflector information. As such it enables AI

agent and ML research that needs access to data beyond static

datasets consisting of collections of images such as ImageNet

and COCO. Furthermore, due to its realism, it can serve as

a generative model for benchmarking 3D perception systems

such as SLAM and dense reconstruction systems as well as

to facilitate research into AR and VR telepresence.
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Fig. 9: Example renderings from the Replica dataset showing glass and mirror reflectors as well as high resolution textures.



Fig. 10: Histogram over the 88 semantic classes contained in the dataset.
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[21] Sébastien Loriot, Jane Tournois, and Ilker O. Yaz. Polygon mesh
processing. In CGAL User and Reference Manual. CGAL Editorial
Board, 4.14 edition, 2019.

[22] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos.
ORB-SLAM: a versatile and accurate monocular SLAM system. TRO,
31(5):1147–1163, 2015.

[23] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohi, Jamie
Shotton, Steve Hodges, and Andrew Fitzgibbon. Kinectfusion: Real-
time dense surface mapping and tracking. In 2011 IEEE International

Symposium on Mixed and Augmented Reality, pages 127–136. IEEE,
2011.

[24] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Yili
Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen
Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
platform for embodied ai research. arXiv preprint arXiv:1904.01201,
2019.

[25] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva,
and Thomas Funkhouser. Semantic scene completion from a single
depth image. In CVPR, 2017.

[26] R. S. Sutton and A. G. Barto. An adaptive network that constructs
and uses an internal model of its world. Cognition and Brain Theory,
1981.

[27] Thomas Whelan, Michael Goesele, Steven J. Lovegrove, Julian Straub,
Simon Green, Richard Szeliski, Steven Butterfield, Shobhit Verma,
and Richard Newcombe. Reconstructing scenes with mirror and glass
surfaces. ACM Transactions on Graphics (TOG), 37(4):102, 2018.

[28] Fei Xia, Amir R. Zamir, Zhiyang He, Alexander Sax, Jitendra Malik,
and Silvio Savarese. Gibson env: Real-world perception for embodied
agents. In CVPR, 2018. http://gibsonenv.stanford.edu/database/.


	Introduction
	Related Work
	Synthetic Scenes
	Real Scenes

	Dataset Creation
	Mesh and Reflector Fixing
	Semantic Annotation

	Dataset Description 
	Data Organization

	Conclusion
	References

