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Abstract

The ability for a robot to create a map of an unknown environment and
localise within that map is of critical importance in intelligent autonomous
operation. This problem is referred to as Simultaneous Localisation and
Mapping (or SLAM ) and has been one of the major focusses of robotics
research over the past 25 years. Although the initial focus was on 2D
laser scan SLAM, more recently full 3D SLAM has become the dominant
paradigm.

The recent expansion in popularity of full, dense 3D SLAM is arguably
a result of the release of the Microsoft Kinect commodity RGB-D sensor,
which provides high quality depth sensing capabilities for a little over one
hundred US dollars. Before the advent of the Kinect, 3D SLAM methods
required either time of flight (TOF) sensors, 3D lidar scanners or stereo
vision, which were typically either quite expensive or not suitable for fully
mobile real-time operation if dense reconstruction was desired. Another
recent technology which is often coupled with dense methods is General-
Purpose computing on Graphics Processing Units (GPGPU) which ex-
ploits the massive parallelism available in GPU hardware to perform high
speed and often real-time processing on entire images every frame. Being
an affordable commodity technology, GPU-based programming is argu-
ably another large enabler in recent dense SLAM research.

Many visual SLAM systems and 3D reconstruction systems (both offline
and online) have been published in recent times that rely purely on RGB-
D sensing capabilities because of the Kinect’s low price and accuracy;
[43, 26, 113, 86]. However given the density of the data available, many
existing systems have one or many limitations imposed by the challenges of
processing such large amounts of information. These include a limitation
in operating area, the inability to function in real-time over large scales, or
not producing a globally consistent reconstruction of the explored environ-
ment or a map representation which is meaningful for robotic operations.
In this thesis we address these issues through the development of a system
which allows real-time globally consistent dense mapping over large scales,
while providing a map representation which is useful for both autonomous
robot navigation and higher level functionality such as object detection.

The development of this system involves solving a number of critical is-
sues including efficient real-time dense mapping over large scales, robust
real-time camera pose estimation, a scalable means of correcting dense re-
constructions for global consistency and representing the map in a format



suitable for robotic operations. We address these issues respectively by 1)
employing an efficient rolling cyclical buffer representation for mapping in
the local frame; 2) estimating a dense photometric camera pose constraint
in conjunction with a dense geometric constraint and jointly optimising
for a camera pose estimate; 3) optimising the dense map by means of a
non-rigid space deformation parameterised by a loop closure constraint;
and, 4) intelligently simplifying the dense map reconstruction to a planar
representation.

As part of this the system is implemented as a set of hierarchical multi-
threaded components which are capable of operating in real-time. The
architecture facilitates the creation and integration of new modules with
minimal impact on the performance of the overall system. This yields
an adaptable and easily extendable system which is easily combined with
other software systems designed for related operations.

We provide a comprehensive quantitative and qualitative evaluation of
all aspects of the system’s performance, demonstrating real-time dense
SLAM over large scales. Our evaluation includes comparisons to other
approaches on standard benchmarks in terms of computational perform-
ance, trajectory estimation and surface reconstruction quality.



CHAPTER 1

Introduction

1.1 Motivation

In recent years visual SLAM has reached a significant level of maturity with a num-

ber of robust real-time solutions being reported in the literature [65, 25, 17, 111].

Although these techniques permit the construction of an accurate map of an envir-

onment, the fact that they are feature-based means that they result in sparse point

cloud maps that either cannot be used directly or have limited utility in many ro-

botic tasks (e.g. obstacle avoidance, path planning, manipulation, etc.). This issue

has motivated the development of dense mapping approaches that aim to use inform-

ation from every pixel from the input video frames to create 3D surface models of

the environment [114, 85]. The emergence of RGB-D cameras, and in particular the

Microsoft Kinect, has seen this work being taken a step further.

The motivation for the work in this thesis is to take local small scale dense visual

mapping to larger scales. There are numerous advantages to dense scene reconstruc-
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1.1. MOTIVATION

tions over sparse classical point-based reconstructions. Substantially more informa-

tion about the scene is captured which is extremely useful in robotics applications.

This information includes the occlusion relationships between surfaces in the scene,

something that is invaluable when any kind of physical interaction with the scene

is desired. In particular large textureless regions of an environment (such as walls

and floors) are difficult to reconstruct using visual feature-based approaches and are

inherently useful for any robotic platform to be aware of for path planning. A full

3D scene model provides a physically predictive reconstruction that can immediately

be used for motion planning and manipulation. This removes the need to rely on 2D

images or other sensors to infer additional information about free space and potential

interface points between objects in the world and end effectors.

Along with the obvious benefits achieved with dense over sparse representations,

real-time operation is another strong motivation for the work in this thesis. While

methods exist to compute very high quality maps from the same RGB-D data used

in our work [133, 134], their inability to function in real-time or over very large scales

restricts their potential applications. In order for dense representations to be useful in

the context of closed-loop robotics scenarios (and indeed other settings where perhaps

a human is involved in the loop) an approach which is capable of processing captured

data in real-time online without any batch steps is necessary. An example of this is

provided in Chapter 8. Other such scenarios beyond autonomous control which would

necessitate a real-time capable approach include augmented/mixed and virtual reality

frameworks.

The quantity of the data which needs to be processed to achieve high fidelity

dense mapping in real-time introduces a challenge in terms of algorithm scalability

and computational performance. With GPUs becoming more and more common

place in consumer electronic devices, initially only in desktop PCs but more recently

in phones and tablets, we can expect in the coming years that sufficient highly parallel

2
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processing power will be available in all kinds of platforms. There is a well matched

coupling between the information processing needs of dense SLAM and GPU pro-

cessing capabilities. However GPGPU brings with it a need to adapt and develop

techniques that can specifically exploit parallel processing methods. While older

methods for visual SLAM focussed on using distinct visual features, which typically

only occur in relatively small numbers, there is a new paradigm shift with regards

to dense visual SLAM that tries to process and reconstruct all available information,

using every pixel in the image if possible.

Typical processes in SLAM such as map correction after loop closure detection are

no longer as simple as rigidly transforming a sparse set of visual feature points after

pose graph optimisation. Solving such issues is a major part of the motivation for the

work in this thesis which has many implications for a number of different fields. By

equipping autonomous devices such as mobile robotic platforms with the capability to

densely reconstruct large scale environments in real-time, immediately their cognitive

capabilities are enormously enhanced. With rich, high quality 3D environment data

available more intelligent autonomous reasoning can be carried out in processes such

as navigation and planning. Higher level processing such as object recognition and

change detection is also made easier by the abundance of scene data available.

Aside from the robotics applications made possible, there are a number of different

tasks which can benefit from RGB-D based real-time large scale dense 3D reconstruc-

tion that previously would have required expensive specialist equipment such as lidar

scanners. One of the most immediately apparent of these is the surveying of indoor

structures. Classic lidar approaches require the scanner to be placed at a number of

different fixed locations and the resulting set of scans to be aligned to achieve a global

point-based model. A dense visual SLAM approach using a handheld sensor provides

a human operator with much more freedom when reconstructing an environment by

allowing free continuous motion throughout the area being scanned. Parts of a scene

3
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which would otherwise be difficult to cover with a lidar device are much more easily

captured with a handheld freely movable RGB-D camera.

The ability to quickly capture dense models of environments has immediate applic-

ation in many areas such as modelling for renovation planning, set capture for visual

effects in the film industry, digital archaeology and real estate. Indeed, real-time low

cost methods for dense reconstruction are much more tangible for non-experts to use

and understand [66]. This is in contrast to previous work in visual SLAM which was

mainly of interest to roboticists. With the advent of Google’s new Project Tango1 for

mobile devices visual SLAM is arguably becoming more and more mainstream and

may be in the pocket of anyone with a smartphone in a very short period of time.

The widescale presence of SLAM-capable sensors in everyone’s hands sets a need for

algorithms capable of exploiting these sensors to their extent, where dense methods

can provide the richest and most informative representations.

In addition to the motivation to take dense reconstruction to larger scales, there is

the step beyond producing such maps that exploits the extra information present in

these models. The object segmentation work of Finman et al. discussed in Chapter

8 is one such example of this. In the context of real-time mobile robot operation

high vertex-count dense maps are not necessarily the most computationally efficient

format for planning and navigation. This motivates the development of a method to

exploit the dense information contained within these maps to derive a representation

which is rich in information required for planning and navigation while also being in a

format that is suitable for real-time computation over during closed-loop autonomous

control.
1https://www.google.com/atap/projecttango

4
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1.2 Background

To date there has been numerous solutions to the SLAM problem with a wide vari-

ety of forms and functionality. When posed as the task of estimating a map of an

unknown environment whilst simultaneously localising within that environment the

actual outputs of a SLAM solution in a more technical sense can be described as

an estimate of the trajectory that the sensor took while exploring the environment

as well as an estimated map of the structure sensed along that trajectory in some

coordinate frame. Typically in visual SLAM (where a camera is the primary input

sensor) the former would take the form of a sequence of camera poses in the appro-

priate space (e.g. two translation components and a rotation component for SLAM

in a 2D environment, otherwise known as SE2, or three translation components and

a three dimensional rotation representation in a 3D environment, often chosen to be

SE3). There does exist a number of SLAM systems which attempt to fit a continuous

time function to the sensor’s trajectory such as that of Furgale et al. [35], however the

work in this thesis is only concerned with the more common approach of estimating

a sequence of distinct camera poses.

When discussing map representations there is much more variety in the kinds of

outputs SLAM systems produce, where the context of the contributions of this thesis

become more apparent. Early 2D laser scan SLAM would typically produce quite

sparse point-based maps of explored environments that resembled building floor plans

in appearance, shown in Figure 1.1. These kinds of maps are quite useful for basic 2D

robot localisation in indoor environments [20], but do not yield very much information

in terms of scene understanding beyond building layout. Later work using 3D laser

scanners produces similar maps in term of point density and appearance (although

in three dimensions), but relies on even more costly full 3D laser scanning sensors

which are not widely available or as portable as some handheld sensors, while also

sometimes being inapplicable in real-time.
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Figure 1.1: The Intel Research Lab dataset, one of the most well known 2D laser scan
SLAM sequences in the community [48].

Figure 1.2: Plan view of a stereo visual SLAM keypoint-based map [80]. The sparse
structure of the map only made up of image keypoints is apparent.
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Figure 1.3: Dense mesh-based map representation captured by the SLAM system
described in this thesis.

There are a number of map representations producible with visual SLAM systems

with the most common being keypoint-based sparse 3D reconstructions. Both mon-

ocular SLAM systems (using a single camera, e.g. [17]) and stereo SLAM systems

(using a pair of cameras to estimate depth, e.g. [80]) can be used to produce these

kinds of maps in real-time, with low cost standard camera technologies. An example

of these kinds of maps is shown in Figure 1.2 where the map is only made up of a

sparse set of image keypoints used in estimating the camera’s trajectory. Again while

useful for localisation and coarse-grained building mapping, this kind of map repres-

entation is less useful for general scene understanding and reasoning about free space

and other processes that require knowledge of complete surfaces. Other approaches

which use standard passive RGB cameras can produce complete surface maps using

dense whole image-based techniques (such as that of Newcombe et al. [87]), however

these SLAM systems are very much restricted in the area over which they can operate,

typically only in desk sized scenes.

The map representation used by the system presented in this thesis is what is

typically referred to as dense, where each pixel in the input data is used to recon-
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struct the final map. This is partially made possible by the use of a depth sensor

as the primary input. Typically referred to as RGB-D sensing (Red, Green, Blue,

Depth), every image captured by the camera provides an estimated depth to each

pixel as well as color. This can be seen as “shortcutting” the depth estimation prob-

lem normally tackled in stereo vision setups, or the structure from motion problem

involved in monocular SLAM (later discussed in Chapter 2). Newcombe et al.’s work

on KinectFusion exploited this type of data to create dense volumetric surface recon-

structions of desk sized scenes [86], similar in appearance to those which could be

created with the DTAM monocular SLAM system [87]. The work in this thesis uses

the same volumetric representation as KinectFusion in the frontend but converts it to

a more scalable dense mesh-based representation in the final backend map represent-

ation, allowing massively scalable dense mapping over large scales. This kind of map

representation is shown in Figure 1.3. It can be seen that in contrast to other SLAM

systems the reconstructions obtained with our approach are useful in many contexts

including building layout analysis, 3D scene understanding and motion planning due

to their global consistency, high fidelity and full surface reconstruction characteristics.

1.3 Scope

The goal of this thesis is to create a real-time large scale dense visual SLAM system

based on RGB-D data that provides high quality surface reconstructions useful for

higher level autonomous robotic tasks. Newcombe et al.’s seminal work on real-time

dense RGB-D based fused surface reconstruction [86] is a key foundation on which

the goals of this thesis are realised. Our work goes beyond previously presented

dense RGB-D based visual SLAM systems and is the first of its kind to (i) provide

a high quality fused surface reconstruction over extended scales in real-time, (ii) use

both dense geometric and photometric information in camera pose estimation, (iii)
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Figure 1.4: System architecture diagram. The major components of the system
include; (i) The TSDF Virtual Shift, (ii) ICP+RGB-D Visual Odometry, (iii) Map
Space Deformation. Not shown is the planar simplification component, which runs
directly off the system output.

provide an up-to-date globally consistent representation of the map in real-time given

detected loop closures, and (iv) provide a simplified planar representation of the

mapped environment in addition to a dense mesh-based reconstruction.

Our system architecture for accomplishing these goals is shown in Figure 1.4,

which follows the approach of a typical SLAM system comprised of a frontend and a

backend. The frontend is concerned with camera pose estimation, local fused surface

reconstruction and place recognition while the backend performs pose graph optimisa-

tion along with dense map optimisation to ensure global reconstruction consistency.

Being highly modular in design the framework is also amenable to the addition of

new components and substitution of existing components.

As part of this thesis we introduce efficient GPU-based methods for both extended

scale fused surface reconstruction and camera pose estimation inclusive of photometric

information. Processing full frame RGB-D data at camera framerate of 30Hz requires

computation over 45MB of raw data per second, which necessitates highly parallel

GPU-based methods to maintain reliable online operation. The system’s hierarchical

multi-threaded architecture facilitates the creation and integration of new modules

with minimal impact on the performance of the overall system.

Incorporating large updates to expansive dense 3D mesh-based maps in an effi-
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cient manner is a non-trivial task that is necessary when not relying on raw point

cloud reprojection for scene reconstruction. In our work we employ a novel para-

meterisation of a surface-wide non-rigid space deformation exploiting the information

gained through pose graph optimisation. This enables the capture of smooth, locally

and globally consistent dense mesh-based maps in real-time over large trajectories.

We provide a comprehensive qualitative and quantitative analysis of many aspects

of the system’s performance, demonstrating large scale real-time globally consistent

fused surface reconstruction and high quality planar simplification which yields high

level information about the area reconstructed. The experimental datasets include

both real-world and synthetic data, as well as a standard RGB-D benchmark and

numerous other datasets captured in both a handheld fashion and onboard a wheeled

robotic platform.

1.4 Publications

The work described in this thesis has appeared in the following publications:

Real-time Large Scale Dense RGB-D SLAM with Volumetric Fusion

T. Whelan, M. Kaess, H. Johannsson, M.F. Fallon, J. J. Leonard and J.B. McDonald.

International Journal of Robotics Research Special Issue on Robot Vision, 2014 [129]

Incremental and Batch Planar Simplification of Dense Point Cloud Maps

T. Whelan, L. Ma, E. Bondarev, P. H. N. de With, and J.B. McDonald. Robotics

and Autonomous Systems ECMR ’13 Special Issue, 2014 [130]

3D Mapping, Localisation and Object Retrieval using Low Cost Robotic

Platforms: A Robotic Search Engine for the Real-world

T. Whelan, M. Kaess, R. Finman, M.F. Fallon, H. Johannsson, J.J. Leonard and J.B.

McDonald. RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras,

(Berkeley, USA), July 2014 [128]
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Deformation-based Loop Closure for Large Scale Dense RGB-D SLAM

T. Whelan, M. Kaess, J.J. Leonard, and J.B. McDonald. IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems, IROS, (Tokyo, Japan), November 2013 [127]

Planar Simplification and Texturing of Dense Point Cloud Maps

L. Ma, T. Whelan, E. Bondarev, P. H. N. de With, and J.B. McDonald. European

Conference on Mobile Robotics, ECMR, (Barcelona, Spain), September 2013 [76]

Robust Real-Time Visual Odometry for Dense RGB-D Mapping

T. Whelan, H. Johannsson, M. Kaess, J.J. Leonard, and J.B. McDonald. IEEE Intl.

Conf. on Robotics and Automation, ICRA, (Karlsruhe, Germany), May 2013 [126]

Kintinuous: Spatially Extended KinectFusion

T. Whelan, M. Kaess, M.F. Fallon, H. Johannsson, J.J. Leonard and J.B. McDon-

ald. RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, (Sydney,

Australia), July 2012 [125]

1.5 Structure

The remainder of this thesis is structured as follows. Chapter 2 provides an overview

of the SLAM problem and an introduction to visual SLAM. Following on from this

the chapter will provide a discussion on dense methods for 3D reconstruction and

mapping. The chapter will end with an in-depth review of the related work relevant

to the research presented in this thesis.

Our first contribution, achieving extended scale fused dense real-time RGB-D

mapping, is fully described in Chapter 3. An introductory background on volumetric

fusion is provided in this chapter, along with our method for extended scale mapping,

TSDF parameterisation, surface reconstruction and color estimation.

Chapter 4 describes our second contribution, robust dense visual odometry for

volumetric fusion-based mapping. In this chapter we formulate methods for both

11



1.5. STRUCTURE

geometry-based and photometrics-based camera pose estimation. Following on from

this we provide our method for combining geometric and photometric pose estimation

into a unified estimate. This chapter also provides a detailed description of how GPU-

based parallelisation of the photometric component of the technique was implemented.

Chapter 5 describes our approach to combining the techniques outlined in Chapters

3 and 4 with a novel method for performing online dense loop closure to complete our

large scale dense visual SLAM system. This is the third contribution of the thesis. In

this chapter we provide details of our SLAM framework and each component involved,

specifically place recognition, space deformation and map optimisation.

Chapter 6 provides a description of our fourth contribution, a method for per-

forming planar simplification and triangulation of dense point cloud maps (such as

those produced by our system outlined in Chapter 5). We outline two processing

frameworks in this chapter, one for batch processing and one for online incremental

processing. The method we use for planar segmentation is provided, as well as de-

scriptions of our methods for segment decimation, triangulation and texturing.

In Chapter 7 we provide extensive experimental evaluation of many different as-

pects of the presented systems. These include qualitative and quantitative evaluations

of camera pose estimation, surface reconstruction quality, segmentation performance,

triangulation quality and computational performance.

Chapter 8 describes two case studies where the contributions of this thesis have

been applied. The first of these is work on point cloud segmentation carried out by

Finman et al. [30, 31]. The second is a fully closed-loop autonomous robotic system

which marries techniques presented in this thesis with existing related work to solve

a simple robotic task.

Finally, Chapter 9 reviews the contributions of this thesis and discusses future

research directions. In particular we focus on real-time robotics applications and the

future of dense methods for autonomous platforms.
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CHAPTER 2

Visual Simultaneous Localisation and Mapping

The SLAM problem poses the task of estimating a map of an unknown environment

whilst simultaneously localising the sensing platform within that map. A wide variety

of sensors have been applied to the SLAM problem where visual SLAM refers to the

instances where one or more cameras are used as the primary sensor input. In this

chapter we will provide an overview of the SLAM problem including its history and the

most widely applied solutions to date. We will also specifically review visual SLAM

before moving onto a detailed overview of dense mapping and work specifically related

to RGB-D based localisation and mapping.

2.1 The SLAM Problem

Although historically embedded in the robotics community, the problem phrased as

SLAM is strongly related to earlier research in communities such as photogrammetry

where it is referred to as bundle adjustment and the computer vision community where
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it is known as structure from motion [120]. Although the same problem in principle,

the main differentiator between SLAM and other formulations is the focus on incre-

mental solutions and real-time robotics applications. A situation where SLAM would

typically be applied involves a mobile robotic platform which requires an estimate of

its position within a newly explored environment in real-time in order to make high

level decisions for navigation and other purposes. For this reason many of the work

on SLAM within the robotics community has focussed on computationally efficient

and scalable solutions to the problem.

Smith and Cheeseman are typically credited with carrying out the seminal work

on the SLAM problem within the robotics community [106]. Their work set the ini-

tial paradigm for approaching the problem by providing a means of estimating the

uncertainty and correlations between both the sensor location and the environment

structure through use of Approximate Transforms (ATs) estimated with the extended

Kalman filter (EKF) [107]. The EKF approach quickly became a key part of sub-

sequent real-time SLAM systems [17, 8, 88], but has a number of limitations. The

most significant of these is the poor scalability of the filtering-based approach. Al-

though the state vector only grows linearly with the size of the map, the covariance

grows quadratically (and hence the space and computational complexity as well).

This characteristic of the EKF translates into a strict bound on the size of the map

which can be computationally feasibly estimated in real-time.

This limitation resulted in a large amount of subsequent research on filter-based

SLAM including local submap filtering by Williams [131], sequential map joining by

Tardos et al. [118], and the compressed filter algorithm by Guivant and Nebot [40].

However these approaches failed to cancel out the quadratic complexity of the process,

only reducing the computation required by a constant factor. One notable exception is

the Hierarchical SLAM algorithm of Estrada et al. which managed to achieve linear

complexity [28]. Another issue with the EKF approach is the assumed unimodal
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distribution, which meant there was an inherent inability for multiple hypotheses to

be naturally represented. This again limits the applicability of the filter in scenarios

where perceptual aliasing is encountered or global localisation is required in spite of

ambiguity. This manifests itself in the classic kidnapped robot problem [119].

The advent of the application of Monte-Carlo methods to robot localisation prob-

lems brought with it a much more scalable and computationally favorable means

of state representation [20]. Otherwise known as particle filters, these techniques

provided a solution to the scalability issues associated with EKF-based SLAM sys-

tems. The most notable of these is the FastSLAM system of Montemerlo et al. [83].

One of the key intuitions of their system was their Rao-Blackwellization of the problem

which represented the posterior distribution as a particle filter over the robot’s path

while allocating an independent Kalman filter for each landmark associated with each

particle. Central to the computational tractability of this approach is the combina-

tion of conditional independence with Rao-Blackwellization coupled with the use of

a tree-based data structure for map management. The FastSLAM approach provides

a solution to global localisation and ambiguity problems by naturally supporting the

approximation of multimodal distributions.

Although proven to be successful in many applications, Julier and Uhlmann

showed that over extended timescales the state estimates provided by filter-based ap-

proaches are guaranteed to become inconsistent [54]. This motion against filter-based

SLAM was later further argued on a different point by Strasdat et al. concluding

that bundle adjustment is more efficient than filtering for visual SLAM [111]. An

alternative SLAM paradigm to EKFs and particle filters is sometimes referred to as

smoothing or pose graph SLAM. This paradigm has become extremely popular in

recent years showing mapping capabilities at scales far beyond what is capable with

filter-based approaches. In pose graph SLAM the problem is represented as a set of

nodes and edges in a graph, where the nodes represent the latent variables and the
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edges represent the measurement constraints between the variables.

Lu and Milios first introduced this representation but chose to only include the

sensor poses in the graph and rely on lidar scan projection for map reconstruction [74].

Since then a large amount of research on graph-based solutions to the SLAM problem

have been published [91, 71, 69, 41, 19]. One of the most significant qualities of graph-

based approaches over filter-based approaches is the fact that the optimisation to solve

the SLAM problem maintains all information about all poses that have been recorded

so far. This is in contrast to filter-based approaches which marginalise out all previous

poses over time. In addition to this the graphical formulation has direct parallels to

sparse linear algebra matrix optimisation techniques which have been successfully

exploited to achieve highly scalable solutions [56, 57]. In particular in this thesis we

make use of the incremental smoothing and mapping (iSAM) approach of Kaess et

al. as an efficient means of solving the SLAM problem over the pose graph [56].

iSAM formulates the SLAM problem in the form of a factor graph which consists

of variables nodes and factor nodes. Variables nodes are connected to factor nodes by

edges in the graph, where a factor node represents a function over all of the variables

to which it is connected. As discussed this formulation of the pose graph results in a

sparse linear algebra factorisation problem which iSAM exploits to solve the system

efficiently. In addition to this, one of the key contributions of iSAM is the efficient

and exact method for incrementally updating the factorisation of the system by only

recomputing elements of the matrix which actually change [55]. This is of enormous

value in real-time settings where new poses are added to the graph incrementally

online by the SLAM frontend and there is no longer a need to completely solve the

entire system each time this occurs. More recent work on graph-based SLAM looks

at robust and efficient means for dealing with outliers in the graph [92, 1, 117, 72].

There has also been focus in recent times on reducing the complexity of the SLAM

problem as it scales over time [53] and as graph complexity grows [75].
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2.2 Visual SLAM

While the majority of early SLAM systems used sensors such as radar, sonar and lidar

to perceive the environment, it wasn’t long before systems based on visual information

came to the forefront. One of the first was an active stereo vision-based SLAM system

that was developed by Davison in his thesis which could capture a consistent map of

sparse landmark features [18]. Following on from this was the breakthrough work on

visual SLAM using a single monocular camera, also by Davison, in his MonoSLAM

system [17]. This approach applied the aforementioned EKF method to SLAM in

the domain of monocular vision. MonoSLAM was capable of estimating the pose

of the camera in real-time while simultaneously estimating the locations of a sparse

set of visual feature points, maintaining full covariance over the entire state vector.

One of the key contributions of this work was the introduction of an inverse depth

parameterisation for visual landmark features [84].

Many visual SLAM systems have a high degree of focus on real-time operation.

The PTAM system of Klein and Murray is one of the key milestones in visual SLAM,

where real-time operation was essential to accomplish convincing augmented reality

tasks in arbitrary small scale workspaces [65]. Again using only monocular visual

information, the PTAM system separated the processes of estimating the camera’s

pose and reconstructing the map into two independent parallel threads. This design

choice was motivated by the proposition that only tracking needs to be carried out

at framerate, while the estimation of the sparse feature map can be carried out in

a lower priority intermittent batch thread. Their system avoided the propagation

of linearisation errors commonly associated with EKF-based approaches by applying

bundle adjustment across a set of wide-baseline keyframes.

Extensions were made to PTAM to extend it to larger scales, such as Castle et al.

who adopted a submapping approach [9]. Though successful in mapping building scale

environments, the submaps were only topologically connected in the keyframe space
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and as a result a global estimate of the environment was unavailable. Other more

specifically tailored solutions to large scale visual SLAM include those of Konolige et

al. [67, 68, 70] who presented the FrameSLAM system for large scale mapping, those

of Sibley et al. [103, 104] who combined appearance-based place recognition with

relative bundle adjustment and that of McDonald et al. [80] which exploits the use

of anchor nodes to achieve multi-session visual SLAM over large scales. Up to this

point in visual SLAM sparse visual feature maps were the standard. However with

an increase in computational power available more recent visual SLAM approaches

have looked beyond sparse features towards richer, denser mapping techniques which

we discuss in the following sections.

2.3 Dense Mapping

One of the earliest methods for real-time handheld vision-based dense 3D reconstruc-

tion was presented by Newcombe and Davison [85]. They leverage the monocular

SLAM system of Klein and Murray [65] to bootstrap a dense depth map reconstruc-

tion based on view-predictive optical flow and constrained scene flow. Soon after

Newcombe et al. published the DTAM system [87], capable of live dense 3D recon-

struction of small scale scenes again with only a monocular camera. Their work made

use of an inverse depth cost volume with GPU accelerated inverse depth map regu-

larisation. Closely related to this system is the work of Stühmer et al. which adopts

an arguably simpler method that directly estimates a depth map using a variational

approach without a cost volume [114]. A notable recent approach to real-time mon-

ocular reconstruction is the semi-dense method of Engel et al. [27], which estimates

the inverse depth of all pixels with a non-negligible image gradient with a Gaussian

probability distribution.

When the Microsoft Kinect RGB-D sensor became available to the research com-
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munity it was quickly adopted across a number of different fields due to a number of

desirable characteristics. It was the first sensor of its kind to provide high resolution

(640×480) depth information as well as color information at a 30Hz framerate at such

a low cost. This made it immediately applicable to a number of problems in robotic

perception and in particular to visual SLAM. One of the earliest SLAM systems built

using the Kinect was that of Henry et al. [43]. Later, KinectFusion brought with

it a strong focus on real-time dense 3D volumetric reconstruction at camera frame

rate [86]. KinectFusion married the increasing popularity in GPGPU with the high

quality real-time full-frame depth maps provided by the Kinect sensor to produce a

system capable of camera frame rate dense 3D reconstruction. KinectFusion was the

first system able to produce full volumetric 3D reconstructions of desk sized scenes at

subcentimetre resolution in real-time, using only a low cost widely available sensor.

Central to the functionality of KinectFusion is the use of a volumetric data struc-

ture for representing the reconstruction. The truncated signed distance function

(TSDF), first introduced by Curless and Levoy [14], provides a convenient scene rep-

resentation which allows computationally efficient means of fusing depth map inform-

ation while essentially providing a moving average of the scene being reconstructed,

resulting in a much smoother model. The TSDF as a data structure is very amenable

to parallel processing and hence perfect for use with GPGPU for enhanced computa-

tional performance. This is one of the keys to KinectFusion’s real-time functionality.

2.4 Related Work

In contrast to the previous section, this section will provide a detailed overview of the

related work specifically using RGB-D devices over other sensors for visual mapping

and localisation. A large number of papers have been published over the last few

years specifically using RGB-D data for camera pose estimation, dense mapping and
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full SLAM pipelines. While many visual SLAM systems existed prior to the advent

of active RGB-D sensors (e.g. Comport et al. [12]), we will focus mainly on the

literature which makes specific use of active RGB-D platforms. One of the earliest

RGB-D tracking and mapping systems used FAST feature correspondences between

frames for visual odometry and offloaded dense point cloud map building to a post-

processing step utilising sparse bundle adjustment (SBA) for global consistency by

minimising feature reprojection error [50]. One of the first real-time dense RGB-

D tracking and mapping systems estimates an image warping function with both

geometric and photometric information to compute a camera pose estimate, however

only relied on rigid reprojection for point cloud map reconstruction without using a

method for global consistency [3]. Similar work on dense RGB-D camera tracking

was done by Steinbrücker et al., also estimating an image warping function based on

geometric and photometric information [108]. Recent work by Kerl et al. presents a

more robust dense photometrics-based RGB-D visual odometry system that proposes

a t-distribution-based error model which more accurately matches the residual error

between RGB-D frames in scenes that are not entirely static [62].

Henry et al. presented one of the first full SLAM systems based entirely upon

RGB-D data, using visual feature matching with Generalised Iterative Closest Point

(GICP) to build up a pose graph and following that an optimised surfel map of the

area explored [43]. The use of pose graph optimisation versus SBA is evaluated, min-

imising feature reprojection error in an offline rigid transformation framework. Visual

feature correspondences are used in conjunction with pose graph optimisation in the

RGB-D SLAM system of Endres et al. [26]. An octree-based volumetric represent-

ation is used to store the map, created by reprojecting all point measurements into

the global frame. This map representation is provided by the OctoMap framework of

Hornung et al., which includes the ability to take measurement uncertainties into ac-

count and implicitly represent free and occupied space while being space efficient [47].
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An explicit voxel volumetric occupancy representation is used by Pirker et al. in their

GPSlam system which uses sparse visual feature correspondences for camera pose es-

timation [95]. They make use of visual place recognition and sliding window bundle

adjustment in a pose graph optimisation framework. To achieve global consistency

the occupancy grid is “morphed” by a weighted average of the log-odds perceptions of

each camera for each voxel. Stückler et al. register surfel maps together for camera

pose estimation and store a multi-resolution surfel map in an octree, using pose graph

optimisation for global consistency [113]. After pose graph optimisation is complete

a globally consistent map is created by fusing key views together. In recent work Hu

et al. proposed a system that uses bundle adjustment in order to make use of pixels

for which no valid depth exists [49], and Lee et al. presented a system which exploits

GPU processing power for real-time camera tracking [73]. Both systems produce an

optimised map as a final step in the process. Kerl et al. use their previously discussed

dense keyframe-based visual odometry system in a pose graph optimisation frame-

work to build a dense visual SLAM system that produces keyframe-based globally

consistent maps after a final post-processing optimisation step [63].

A substantial number of derived works have been published recently after the

advent of the KinectFusion system of Newcombe et al. [86], mostly focused on ex-

tending the range of operation, with other related work on object recognition and

motion planning [59, 124]. Recent work by Bylow et al. and Canelhas et al. directly

tracks the camera pose against the accumulated volumetric model by exploiting the

fact that the TSDF representation used by KinectFusion stores the signed distance

to the closest surface at voxels near the surface [6, 7]. This avoids the need to raycast

a vertex map for each frame to perform camera pose estimation, which potentially

discards information about the surface reconstruction.

Roth and Vona extend the operational range of KinectFusion by using a double

buffering mechanism to map between volumetric models upon camera translation
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and rotation, using a voxel interpolation for the latter [97]. However no method for

recovering the map is provided. Zeng et al. replace the explicit voxel representation

used by KinectFusion with an octree representation which allows mapping of areas

up to 8m×8m×8m in size [132]. However this method does increase the chance

for drift within the map and provides no means of loop closure or map correction.

Steinbrücker et al. make use of a multi-scale octree to represent the signed distance

function, allowing full color reconstructions of scenes as large as an entire corridor

including nine rooms spanning a total area of 45m×12m×3.4m [109]. After an RGB-

D sequence has been processed, a globally consistent camera trajectory is resolved

and the model is reconstructed. Keller et al. present an extended fusion system

made space efficient by using a point-based surfel representation, although with no

method for drift correction or loop closure detection [61]. Chen et al. present a novel

hierarchical data structure that enables extremely space efficient volumetric fusion,

using a streaming framework allowing effectively unbounded mapping range, limited

only by available memory [10]. However the system lacks any method for mitigating

drift or enforcing global consistency. Nießner et al. present an alternative space

efficient method for large scale dense fusion that uses an intelligent voxel hashing

function to minimise the amount of memory required for reconstruction, but again

without a means of correcting for drift [89].

An alternative approach to the modern SLAM problem (making use of higher

level semantic information) is introduced by Salas-Moreno et al., whereby known

objects are detected, tracked and mapped in real-time in a dense RGB-D framework

known as SLAM++ [99]. Pose graph optimisation is used to ensure global consistency

on the level of camera poses and detected object positions. This does allow loop

closure, however less influence is placed on a full scene reconstruction with only point

cloud reprojections being used for mapped loop closure. Recent work by Henry et

al. uses multiple smaller “patch volumes” to segment the mapped space into a set
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of discrete TSDFs, each with a 6-degrees-of-freedom (6-DOF) pose which is rigidly

optimised upon loop closure detection [45]. This approach can be seen as similar to the

SLAM++ approach of Salas-Moreno et al. whereby the patch volumes are analogous

to objects. While achieving global consistency between each volume, there is no clear

solution presented for correcting the surface within any one given volume or stitching

surfaces which are split between volumes, leaving local surfaces disconnected.

Zhou et al. present an impressive method for reconstructing 3D scenes that spe-

cifically targets the high-frequency noise and low-frequency distortion effects often

encountered with RGB-D data [134]. By reconstructing fragments of the scene which

are then aligned and deformed very high quality reconstructions can be obtained, how-

ever in what is a strictly offline framework. Similar work also by Zhou and Koltun

presents a method which detects points of interest in a scene and specifically optim-

ises the camera trajectory to preserve detailed geometry around these points, within

an offline framework [133].

An number of approaches that rely on keyframes have been developed to tackle the

problem of RGB-D mapping and SLAM. Tykkälä et al. present a system which uses

real-time dense photometric keyframe-based camera tracking to determine a camera

trajectory around an indoor environment [121]. Individual RGB-D frames are also

fused into existing keyframes to improve reconstruction quality. An optional bundle

adjustment step can then be taken to optimise the camera poses before a water-

tight Poisson mesh reconstruction is computed as a post-processing step. Meilland

and Comport propose a model that unifies the benefits of a dense voxel-based rep-

resentation with a keyframe representation allowing high quality dense mapping over

large-scales, although without detecting large loop closures or correcting for drift [81].

An intelligent forward composition approach is proposed which enables efficient com-

bination of reference images to create a single predicted frame without repeated re-

dundant image warps. In our work we chose to avoid a keyframe approach in spite
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of the resulting higher memory requirement. A fully 3D voxel-based method, such as

the one presented in this thesis, removes the need to implement specific schemes to

overcome the problems associated with reconstructing complex non-concave objects

and non-convex scenes.

On the topic of map representation and planar simplification, triangular meshing

of 3D point clouds is a well-studied problem with many existing solutions. One class

of triangulation algorithms computes a mathematical model prior to triangulation to

ensure a smooth mesh while being robust to noise [60, 52]. This type of algorithm

assumes surfaces are continuous without holes, which is usually not the case in open

scene scans or maps acquired with typical robotic sensors. Another class of algorithms

connects points directly, mostly being optimised for high-quality point clouds with

low noise and uniform density. While these algorithms retain fine details in objects

[5, 101], they are again less applicable to noisy datasets captured with an RGB-D or

lidar sensor, where occlusions create large discontinuities.

With real-world environment triangulation in mind, the Greedy Projection Tri-

angulation (GPT) algorithm has been developed [39, 79]. The algorithm creates

triangles in an incremental mesh-growing approach, yielding fast and accurate trian-

gulations. However, the GPT algorithm keeps all available points to preserve geo-

metry, which is not always necessary for point clouds containing surfaces that are

easily characterised by geometric primitives. To solve this problem a hybrid trian-

gulation method was developed by Ma et al., where point clouds are segmented into

planar and non-planar regions for separate triangulation [77]. The QuadTree-Based

(QTB) algorithm was developed to decimate planar segments prior to triangulation.

The QTB algorithm significantly reduces the amount of redundant points, although a

number of limitations degrade its performance. For example, the algorithm does not

guarantee that final planar points will lie inside the original planar region, which can

lead to noticeable shape distortion. The algorithm also produces duplicate vertices,
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overlapping triangles and artificial holes along the boundary.

There is a vast amount of literature on planar segmentation available. Oehler

et al. adopt a multi-resolution approach that relies on using a Hough transform

over co-planar clusters of surfels, ultimately relying on RANSAC for the plane fitting

component [90]. Deschaud and Goulette use a region growing approach made robust

to noise by growing in a voxel space over the input data rather than the raw points

themselves [21]. Some algorithms extend 2D graph cut theory towards 3D point cloud

data [38, 37, 112]. These algorithms are designed for general object segmentation and

their complexity is in general too high for plane detection, unlike the low-complexity

algorithm proposed by Rabbani et al. [96], which imposes a smoothness constraint

on segmentation. However, like in previous work these methods are all concerned

with batch processing scenarios rather than the incremental segmentation growing

scenario [77]. Related also is the work of Ruhnke et al. which looks at simplifying

dense point cloud maps by learning local surface attributes via sparse coding, rather

than explicitly extracting geometric primitives [98].

As discussed there exists a large number of systems utilising RGB-D data for

SLAM and related problems. However, most are either unable to (i) operate in real-

time, (ii) provide an up-to-date optimised representation of the map at runtime or

any time it is requested or (iii) efficiently incorporate large non-rigid updates to the

map. Non-rigid surface correction is of great interest specifically in the realm of

volumetric fusion as typically reconstructions are locally highly accurate but drift

slowly over large scales over time, where a smooth continuous deformation of the

surface is most suitable for correction. Additionally, while there is a significant amount

of existing work on planar simplification and triangulation, none of the methods

discussed above are optimal for the type of data we wish to process in a potentially

real-time framework. In the following chapters we will fully describe our approach

to RGB-D SLAM with volumetric fusion which is capable of functioning in real-time
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over large scale trajectories, while efficiently applying non-rigid updates to the dense

map upon loop closure to ensure global consistency. We will also describe our method

for efficient planar simplification and triangulation of dense point cloud maps, in both

batch and incremental online settings.
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CHAPTER 3

Extended Scale Dense Mapping

In this chapter we will provide some background on the usage of volumetric fusion

for dense RGB-D based tracking and mapping and describe our extension to Kinect-

Fusion, the most widely cited system that employs this approach, to allow spatially

extended mapping.

3.1 Background

Real-time volumetric fusion with RGB-D cameras was brought to the forefront by

Newcombe et al. with the KinectFusion system [86]. A significant component of the

system is the cyclical pipeline used for camera tracking and scene mapping, whereby

full depth maps are fused into a volumetric data structure, which is then raycast to

produce a predicted surface that the subsequently captured depth map is matched

against using ICP. We review the method for integrating new depth maps into the

volumetric data structure in Section 3.2, while our method for tracking the camera
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3.1. BACKGROUND

Figure 3.1: Two dimensional example of the structure of the truncated signed distance
function representation of an implicit surface. Shown are example signed distance
values stored at voxels within the truncation distance of the observed surface, with
rays cast from the observing sensor.

motion against the predicted surface model is described in Chapter 4. The truncated

signed distance function (TSDF) is the volumetric data structure used that encodes

implicit surfaces by storing the signed distance to the closest surface at each voxel

up to a given truncation distance from the actual surface position. Points at which

the sign of the distance value changes are known as zero crossings, which represent

the actual position of the surface, shown in Figure 3.1. Each voxel also stores a

weight for the distance measurement at that point, effectively providing a moving

average of the surface position. In the case of KinectFusion, the TSDF is stored as a

three dimensional voxel grid in GPU memory where dense depth map integration is

accomplished by sweeping through the volume and updating distance measurements

accordingly, while surface raycasting is carried out by simply projecting rays from

the current camera pose and returning the depth and surface normals at the first

zero crossings encountered. Surface normals are easily computed by taking the finite

difference around a given position within the TSDF, as exploited by Bylow et al. [6]
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and Canelhas et al. [7]. The entire process is very amenable to parallelisation and

greatly benefits in execution time from being implemented on a GPU. A point to note

is that the TSDF representation has a minimal surface thickness limitation imposed

by the selected truncation distance. This manifests itself in the fact that two surfaces

closer than the selected truncation distance will effectively “overwrite” each other

when observed. This problem was highlighted and explored by Henry et al. in their

work on multiple fusion volumes [44].

3.2 Volume Representation

Defining the voxel space domain as Ψ ⊂ N3 the TSDF volume S at some location

s ∈ Ψ has the mapping S(s) : Ψ → R × N × N3. Within GPU memory the TSDF

is represented as a 3D array of voxels. Each voxel contains a signed distance value

S(s)D, a weight value S(s)W and a value for each color component R, G and B

(S(s)R, S(s)G, S(s)B). The integration of new surface measurements (i.e. depth map

values projected into the TSDF from the current camera pose) is carried out in the

same fashion as Newcombe et al., when integrating a new signed distance function

measurement S(s)Di during the fusion of a new depth map, each voxel s ∈ Ψ at time

i is updated with:

S(s)D
′

i =
S(s)Wi−1S(s)Di−1 + S(s)Wi S(s)Di

S(s)Wi−1 + S(s)Wi
(3.1)

S(s)W
′

i = min(S(s)Wi−1 + S(s)Wi ,max_weight) (3.2)

As is the case with previous approaches, we take S(s)Wi = 1 to provide a simple

moving average. Bylow et al. have experimented with different weighting schemes [6],

however we have found the original value of 1 used by Newcombe et al. to provide

good performance [86]. Using only a cubic volume, we parameterise the TSDF by the
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Figure 3.2: Visualisation of the volume shifting process for spatially extended map-
ping; (i) The camera motion exceeds the movement threshold ms (direction of camera
motion shown by the black arrow); (ii) Volume slice leaving the volume (red) is raycast
along all three axes to extract surface points and reset to free space; (iii) The raycast
surface is extracted as a point cloud and fed into the Greedy Projection Triangulation
(GPT) algorithm of Marton et al. [79]; (iv) New region of space (blue) enters the
volume and is integrated using new modulo addressing of the volume.

side length in voxels, vs, and the dimension in metres, vd. Both of these parameters

control the resolution of the reconstruction along with the size of the immediate

“active area” of reconstruction. In all experiments we set vs = 512 for total GPU

memory usage of 768MB, where each signed distance value is a truncated float16

and each weight and color component value is an unsigned int8. The 6-DOF camera

pose within the TSDF at time i is denoted as P T
i , composed of a rotation RT

i ∈ SO3

and a translation tTi ∈ R3. The origin of the TSDF coordinate system is positioned

at the center of the volume with basis vectors aligned with the axes of the TSDF.

Initially RT
0 = I and tT0 = (0, 0, 0)>. The position of the TSDF volume in voxel units

in the global frame is defined by gi and initialised to be g0 = (0, 0, 0)>. Note that

the superscript T refers to a pose within the TSDF coordinate frame and not the

transpose > operator.
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Figure 3.3: Visualisation of the interaction between the movement threshold ms and
the shifting process. Between frames 0 and 1 the camera does not cross the movement
boundary (dark brown) and no shift occurs. At frame 2, the pose crosses the boundary
and causes a volume shift, recentering the volume (teal) around P T

2 and updating g2.
The underlying voxel grid quantisation is shown in light dashed lines.

3.3 Volume Shifting

Unlike the original work of Newcombe et al., camera pose estimation and surface

reconstruction is not restricted to only the region around which the TSDF was ini-

tialised. By employing modulo arithmetic in how the TSDF volume is addressed in

GPU memory we can treat the structure like a cyclical buffer which virtually trans-

lates as the camera moves through an environment. Figure 3.2 provides a visual

example and description of the shifting process. It is parameterised by an integer

movement threshold ms, defining the cubic movement boundary (in voxels) around

gi which upon crossing, causes a volume shift, shown in Figure 3.3. Discussion on

the choice of value for ms is provided in Chapter 7. Each dimension is treated inde-

pendently during a shift. When a shift is triggered, the TSDF is virtually translated

about the camera pose (in voxel units) to bring the camera’s position to within one

voxel of gi+1. The new pose of the camera P T
i+1 has no change in rotation, while the
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shift corrected camera translation tT
′

i+1 is calculated from tTi+1 by first computing the

number of voxel units crossed;

u =

⌊
vst

T
i+1

vd

⌋
(3.3)

and then shifting the pose while updating the global position of the TSDF;

tT
′

i+1 = tTi+1 −
vdu

vs
(3.4)

gi+1 = gi + u (3.5)

3.3.1 Implementation

There are two parts of volumetric fusion that require indexed access to the TSDF

volume; 1) Volume Integration and 2) Volume Raycasting. Referring again to Figure

3.2, the new surface measurements shown in blue can be integrated into the memory

previously used for the old surface contained within the red region of the TSDF by

ensuring all element look ups in the 3D block of GPU memory reflect the virtual

voxel translation computed in Equation 3.5. Assuming row major memory ordering,

an element in the unshifted cubic 3D voxel grid can be found at the 1D memory

location a given by:

a = (x+ yvs + zv2
s) (3.6)

The volume’s translation can be reflected in how the TSDF is addressed for integration

and raycasting by substituting the indices in Equation 3.6 with values that are offset

by the current global position of the TSDF and bound within the dimensions of the
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3.3. VOLUME SHIFTING

voxel grid using the modulus operator:

x′ = (x+ gix) mod vs (3.7)

y′ = (y + giy) mod vs (3.8)

z′ = (z + giz) mod vs (3.9)

a = (x′ + y′vs + z′v2
s) (3.10)

The original KinectFusion work benefits greatly from memory caching and pipelining

functionality within GPU memory to achieve high computational performance within

the integration step [86]. In our implementation we have found that use of a cyclical

addressing method has no significant effect on real-time performance. An explanation

for the lack of a drastic performance decrease is that even after buffer cycling there

still exists continuous blocks of memory which at least partially maintain pipelining.

3.3.2 Surface Extraction

In order to recover the surface from the TSDF that moves out of the region of space

encompassed by the volume, the u value computed in Equation 3.3 is used with

gi to index a three dimensional slice of the volume to extract surface points from.

These points are extracted by three orthogonal raycasts aligned with the axes of

the TSDF through the slice, extracting zero crossings as individual surface vertices.

We filter out noisy measurements at this point by only extracting points that are

above a minimum voxel weight. The same 3D slice of the volume is then reset to

free space to allow integration of new surface measurements. The extracted vertices

are transferred to main system memory where further processing takes place. The

orthogonal raycast can result in duplicate vertices if the TSDF is obliquely aligned to

the surface being reconstructed. A voxel grid filter is used to remove these points by

overlaying a voxel grid (with the same voxel size as the TSDF) on the extracted point
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Figure 3.4: Two dimensional visualisation of the association between extracted cloud
slices, the camera poses and the TSDF volume. Note that the camera poses here are
in global coordinates rather than internal TSDF coordinates. A red dashed line links
camera poses with extracted slices of the TSDF volume (Pγ, Pβ and Pα with C2, C1

and C0 respectively). The large triangles represent camera poses that caused volume
shifts while the small black squares represent those that didn’t.

cloud and returning a new point cloud with a point for each voxel that represents

the centroid of all points that fell inside that voxel. Each set of vertices extracted

from the TSDF in this fashion is known as a “cloud slice”. From here, we rebuild the

surface by incrementally triangulating successive cloud slices using an incremental

mesh growing variant of the GPT algorithm to ensure surface connectivity between

slices [79].

We choose not to perform marching cubes because this would lock the TSDF data

structure in GPU memory and delay the reset of the extracted volume slice, impacting

volume shifting performance overall. Axis-aligned orthgonal raycasting is extremely

fast and allows us to offload the data from the GPU and unlock the TSDF volume as

quickly as possible. This way the GPU-based tracking and integration components

of the system can continue with minimal interruption while the extracted cloud slice

is triangulated on the CPU asynchronously.
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Figure 3.5: Visualisation of a shifted TSDF volume with extracted cloud slices and
pose graph highlighted, using dynamic cube positioning discussed in Section 3.4. The
pose graph is drawn in pink, while small cuboids are drawn for camera poses that have
cloud slices associated with them. Note that the apparent striping of the boundaries
between slices has been added for visualisation purposes only.
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We associate with each cloud slice the pose of the camera at the time of the slice’s

extraction. This is visualised in Figure 3.4. At this point we introduce camera poses

in the global coordinate frame outside of the TSDF volume Pi, composed of a rotation

Ri ∈ SO3 and a translation ti ∈ R3. The global pose Pi of a camera from the TSDF

at time i is made up of:

Ri = RT
i (3.11)

ti = tTi +
vdgi
vs

(3.12)

We construct a pose graph incrementally using each global camera pose Pi, that is,

we associate a camera pose to every frame, whereas only some poses are attached to

cloud slices. The full shifting and surface extraction process is shown in Figure 3.5,

where only the poses with associated cloud slices are drawn.

3.4 Dynamic Cube Positioning

As mentioned in Section 3.2, we position the camera in the center of the TSDF volume

and roughly maintain this position inside the TSDF at all times. This parameterisa-

tion of the camera position relative to the volume is wasteful as most of the volume

is unused (i.e. behind the camera) and there is little overlap between the camera

frustum and the volume, shown in Figure 3.6. By dynamically changing the posi-

tion of the volume relative to the camera depending on the camera’s orientation we

can achieve greater frustum-volume overlap and make better use of the entire TSDF

volume. In a typical SLAM setting a circular parameterisation is sufficient.

Defining βi to be the rotation around the vertical axis of the camera pose at time

i, we can compute the new position of the center of the TSDF volume relative to the

camera as:

rT =
(vd

2
· cos

(
βi +

π

2

)
, 0,

vd
2
· sin

(
βi −

π

2

))>
(3.13)
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(i) (ii)

Figure 3.6: Visualisation of frustum-volume overlap for regular and dynamic cube
positioning, from left to right; (i) By keeping the camera centered in the TSDF,
there is poor overlap between the camera’s field of view and the volume; (ii) By
using a circular (or spherical) parameterisation of the volume’s position relative to
the camera, greater overlap with and usage of the TSDF can be achieved.
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(i) (ii)

Figure 3.7: From left to right; (i) Input depth map registered to RGB channel;
(ii) Color measurements from pixels highlighted in red are rejected for being on depth
discontinuities. Lighter surfaces are weighted higher in color integration due to being
well aligned with the camera sensor.

This dynamic parameterisation enables more intelligent use of the volume and main-

tains a larger active reconstruction area in front of the camera at all times.

3.5 Color Estimation

As well as estimating the surface itself in the reconstruction process, we also estimate

the color of the surface. Color is integrated into the TSDF in a similar manner to

depth measurements including value truncation and averaging. The only distinction

is that the predicted surface color values obtained from the volume raycast are not

used in camera pose estimation. The motivation for this decision is discussed in

Section 4.2. Color fusion has similar advantages to depth map fusion in that sensor

noise and other optical phenomena are averaged out from the final reconstruction

over time.
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3.5.1 Artifact Reduction

The estimated surface color is sometimes inaccurate around the edges of closed ob-

jects in a scene due to poor calibration between the RGB and depth cameras or

light diffraction around objects. We have observed that there typically exists stark

discontinuities in the depth channel around such edges which can in turn cause the

background to blend with the foreground surface or vice-versa. To address this issue

we opt to reject the integration of color measurements close to or on strong bound-

aries in the depth image. A color measurement is deemed to be on a boundary if

some of its neighbours are more than a given distance away from it in depth. We

consider a pixel neighbourhood window of 7× 7 pixels around each RGB value to be

integrated. Figure 3.7 shows a source depth image and rejected measurements on the

TSDF surface model. In addition to this it is ideal to weight color measurements on

surfaces well aligned with the sensor higher than those at extreme angles. We weight

each color measurement update by the normal angle on the surface with respect to

the sensor, visualised in Figure 3.7. The more parallel the surface is to the image

plane, the higher the weight on the color measurement.

Defining the image space domain as Ω ⊂ N2, an RGB-D frame Ii is composed of

an RGB image rgbi : Ω → N3, a depth image di : Ω → R and a timestamp i. We

also define a normal map computed for di as ni : Ω→ R3. We list the algorithm for

color integration in Algorithm 3.1. Note that we define the z-axis to point outward

from the sensor and in all experiments use an RGB-D frame resolution of 640×480.

An example reconstruction is shown in Figure 3.8 comparing surface coloring with

and without the described measures. As can be seen incorporating these measures

greatly reduces visual artifacts in the captured model.
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(i) (ii)

Figure 3.8: From left to right; (i) Light diffraction behind a foreground surface has
caused incorrect color integration (ii) Incorporating a discontinuity check with surface
angle weighting greatly reduces the visual artifacts captured.

Algorithm 3.1: Color Integration
Input: rgbi Current RGB image

di Current depth map
ni Current normal map
S(s)i Current TSDF volume
s ∈ Ψ Current voxel
p ∈ Ω Current pixel

do
c← 0
for each pk in 7× 7 area around p do

if |di(pk)− di(p)| > depth threshold or di(pk) = 0 then
c← c+ 1

if c < count threshold then
wc = min(1.0,ni(p)z/max_weight)
S(s)R

′
i = (S(s)Wi−1S(s)Ri−1 + wcrgbi(p)R)/(S(s)Wi−1 + wc)

S(s)G
′

i = (S(s)Wi−1S(s)Gi−1 + wcrgbi(p)G)/(S(s)Wi−1 + wc)
S(s)B

′
i = (S(s)Wi−1S(s)Bi−1 + wcrgbi(p)B)/(S(s)Wi−1 + wc)

end
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3.6 Summary

This chapter has described our method for dense volumetric fusion-based mapping

which, unlike previous work, is capable of functioning over extended scale environ-

ments. This is the first key component in taking high quality real-time dense fused

mapping (first proposed by Newcombe et al. [86]) to large scale environments and

developing a fully fledged dense SLAM system. The contributions of this chapter

alone are significant in how datasets shown in Whelan et al. [125] and some datasets

later evaluated in Chapter 7 (such as datasets 2 and 4 in Section 7.2) can be captured

with such a system. The contribution of advanced methods for fusing appearance

information also comes to the forefront in our evaluation of surface reconstruction

quality in Chapter 7, specifically in Section 7.1.2.2 when compared to alternative

map representations.

41



CHAPTER 4

Robust Dense Visual Odometry

In this chapter we describe the geometric and photometric components of the camera

pose estimation pipeline and our method for combining them to form a single joint

pose constraint. A number of volumetric fusion systems use only depth information

for camera pose estimation [86, 10, 6, 61, 97, 132, 7]. A reliance on geometric inform-

ation alone for camera pose estimation has a number of well understood problems,

such as the inability to function in corridor-like environments and other scenes with

few 3D features. To avoid these problems, in a similar manner to Henry et al., we

combine dense geometric camera pose constraints with dense photometric constraints

to achieve a more robust pose estimate in more challenging scenes [45]. We base our

approach on the dense photometric image warping method of Steinbrücker et al. and

Audras et al., performing dense RGB-D alignment every frame in real-time [108, 3].

As with other components of the pipeline we utilise a GPU implementation of the

algorithm.
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4.1 Geometric Camera Pose Estimation

Many of the previous works on volumetric fusion estimate the pose of the camera

each frame relative to the TSDF by aligning the current depth map with the TSDF,

either by raycasting the volume to retrieve a vertex and normal map of the predicted

surface (as done originally by Newcombe et al. [86]) and performing iterative closest

point (ICP) or by directly minimising the distance to the surface in the TSDF [6, 7].

We perform the former in order to avoid expensive global memory accesses in the

TSDF volume in GPU memory.

We aim to find the motion parameters ξ that minimise the cost over the point-

to-plane error between vertices in the current depth frame and the predicted raycast

surface:

Eicp =
∑
k

∥∥∥(vk − exp(ξ̂)Tvkn

)
· nk
∥∥∥2

2
, (4.1)

where vkn is the k-th vertex in frame n, vk,nk are the corresponding vertex and normal

in the model, T is the current estimate of the transformation from the current frame

to the model frame and exp(ξ̂) is the matrix exponential that maps a member of the

Lie algebra se3 (the minimal parameterisation ξ of a pose update) to a member of the

corresponding Lie group SE3 (a homogeneous transformation matrix T). Initially we

set the estimated camera transformation matrix T to the identity, where

T =

 R t

0 0 0 1

 ∈ SE3 (4.2)

with a rotation R ∈ SO3 and translation t ∈ R3. For simplicity of notation we

omit conversions between 3-vectors (as needed for dot and cross products) and their

corresponding homogeneous 4-vectors (as needed for multiplications with T). We

utilise projective data association as originally proposed by Newcombe et al. for fast
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point correspondence between the vertex maps by projecting the vertices from the

depth map vn onto the predicted surface vertices v. Linearising the transformation

around the identity we get:

Eicp ≈
∑
k

∥∥∥(vk − (I + ξ̂)Tvkn

)
· nk
∥∥∥2

2
(4.3)

=
∑
k

∥∥∥(vk −Tvkn
)
· nk − ξ̂Tvkn · nk

∥∥∥2

2
(4.4)

=
∑
k

∥∥∥∥∥∥∥
 −Tvkn × nk

−nk


>

ξ + (vk − vkn) · nk

∥∥∥∥∥∥∥
2

2

(4.5)

= ‖Jicpξ + ricp‖2
2 (4.6)

At this point we must compute the least-squares solution

arg min
ξ

‖Jicpξ + ricp‖2
2 (4.7)

to compute an improved camera transformation estimate

T′ = exp(ξ̂)T (4.8)

ξ̂ =

 [ω]× x

0 0 0 0

 (4.9)

with ξ = [ω>x>]>, ω ∈ R3 and x ∈ R3.

Blocks of the measurement Jacobian and residual can be populated in tandem

and solved with a highly parallel tree reduction on the GPU to produce a 6 × 6

system of normal equations which are then transferred to the CPU and solved with

Cholesky decomposition to yield ξ. As in related work [86] we compute the alignment

iteratively with a three level coarse-to-fine depth map pyramid scheme.
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4.2 Photometric Camera Pose Estimation

As mentioned previously, for photometric camera pose estimation we choose to match

between consecutive RGB-D frames instead of matching to the texture predicted from

the surface reconstruction. This is motivated by the fact that depending on the con-

figuration of the TSDF there may be poor overlap between the camera frustum and

the volume, which limits the amount of photometric information which can be used,

where distant photometric features are desirable to constrain camera rotation. Fur-

thermore, the resolution of the TSDF in terms of voxels may produce a raycast image

with a much lower resolution than the image produced by the RGB sensor. By de-

fault the Microsoft Kinect and Asus Xtion Pro Live, two of the most popular RGB-D

sensors, have automatic exposure and white balance enabled, which can cause unusual

coloring of the surface reconstruction over time, again hindering model-based photo-

metric tracking. While these functions of the camera can be disabled we have found

that it is sometimes desirable to keep them enabled as in general scene illumination

can vary to a certain degree.

Given two consecutive RGB-D frames [rgbn−1,dn−1] and [rgbn,dn] we compute

a rigid camera transformation between the two that maximises photoconsistency.

Defining V : Ω → R3 to be the back-projection of a point p, dependent on a metric

depth map M : Ω → R and camera intrinsics matrix K made up of the principal

points cx and cy and the focal lengths fx and fy:

V (p) =

(
(px − cx)M(p)

fx
,
(py − cy)M(p)

fy
,M(p)

)>
(4.10)

We also define perspective projection of a 3D point v = (x, y, z)> including deho-

mogenisation by Π(v) = (x/z, y/z)>. The cost we wish to minimise depends on the
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difference in intensity values between two images In−1, In : Ω→ N:

Ergbd =
∑
p∈L

∥∥∥In(p)− In−1

(
Πn−1(exp(ξ̂)TVn(p))

)∥∥∥2

2
(4.11)

Where L is the list of valid interest points populated in Algorithm 4.1 and T is the

current estimate of the transformation from In to In−1. Similar to the geometric

pose estimation method we solve for this transformation iteratively with a three level

image pyramid.

4.2.1 Preprocessing

For both pairs we perform preprocessing on the RGB image and depth map. For each

depth map we convert raw sensor values to a metric depth map M : Ω → R and we

compute an intensity image I = (rgbR ∗ 0.299 + rgbG ∗ 0.587 + rgbB ∗ 0.114) with

I : Ω → N. Following this a three level intensity and depth pyramid is constructed

using a 5× 5 Gaussian kernel for downsampling. We compute the partial derivatives

∂In
∂x

and ∂In
∂y

using a 3 × 3 Sobel operator coupled with a 3 × 3 Gaussian blur with

σ = 0.8. Each of these steps is carried out on the GPU acting in parallel with one

GPU thread per pixel.

4.2.2 Precomputation

As with the ICP method described in Section 4.1, we use projective data association

between frames to populate the point correspondences. For the sake of speed we only

include point correspondences with a minimum gradient in the intensity image, with

the motivation that other low gradient points will not have a significant effect on

the final transformation. We implement this optimisation by using a list of interest

points, which involves a much larger set of points than a point feature extractor could

provide. Compiling this list of points as a parallel operation is done using a basic
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4.2. PHOTOMETRIC CAMERA POSE ESTIMATION

parallel reduction exploiting shared memory in each CUDA thread block as inspired

by a similar operation by van den Braak et al. [123]. Algorithm 4.1 lists the operation

as it would operate for each level of the pyramid.

Algorithm 4.1: Interest Point Accumulation
Input: ∂In

∂x
and ∂In

∂y
intensity image derivatives

s minimum gradient scale for pyramid level
Output: L list of interest points

kL global point count
Data: α thread block x-dimension

β thread block y-dimension
γ pixels per thread
ι shared memory local list
κ shared memory local index
blockIdx CUDA block index
threadIdx CUDA thread index

in parallel do
i← β ∗ blockIdx.y + threadIdx.y // compute starting pixel
j ← α ∗ γ ∗ blockIdx.x+ γ ∗ threadIdx.x
if threadIdx.x = 0 and threadIdx.y = 0 then

κ← 0
syncthreads()
for l← 0 to γ do // for each pixel in this thread

p← (i, j + l)
g2 = ∂In

∂x
(p)2 + ∂In

∂y
(p)2

if g2 ≥ s then // add pixel if gradient high enough
idx← atomicInc(κ)
ιidx ← p

syncthreads()
b← α ∗ γ ∗ threadIdx.y + γ ∗ threadIdx.x
for l← 0 to γ do // reduce local list into global list

a← b+ l
if a < κ then

idx← atomicInc(kL)
Lidx ← ιa

end

In the computation of the Jacobian matrix the projection of each point in Mn−1

is required. For each pyramid level the 3D projection Vn−1(p) of each point p in the

depth map is computed prior to beginning iteration. Only projecting certain points

47



4.2. PHOTOMETRIC CAMERA POSE ESTIMATION

based on a condition results in performance hindering branching and a reduction in

pipelining. Empirically it was found to be faster to simply project the entire depth

map rather than only project points required in correspondences.

4.2.3 Iterative Transformation Estimation

Our iterative estimation process takes two main steps; (i) populating a list of valid

correspondences from the precomputed list of interest points and (ii) solving the linear

system for an incremental transformation and concatenating these transformations.

The first step involves a reduction similar to the one in Algorithm 4.1, but rather than

reducing from a 2D array to a 1D array it reduces from a 1D array to another 1D

array; a distinction which results in a notable difference in implementation. Before

each iteration we compute the projection of the current estimated transformation T

into the image (given the camera intrinsics matrix K) before uploading to the GPU

as

RI = KRK−1, tI = Kt. (4.12)

Algorithm 4.2 lists the process of populating a list of point correspondences from the

list of interest points which can then be used to construct the Jacobian.

Similar to the previous section, with a list of valid correspondences we need only

compute the least-squares solution

arg min
ξ

‖Jrgbdξ + rrgbd‖2
2 (4.13)

to compute the motion update vector ξ. We first normalise the intensity difference

sum σ computed in Algorithm 4.2 to enable a weighted optimisation σ′ =
√
σ/kC.

Computation of the σ value in parallel is in fact an optimisation exploiting the atomic

arithmetic functions available in the CUDA API. From here Jrgbd and rrgbd can be
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Algorithm 4.2: Correspondence Accumulation
Input: L list of interest points

dδ maximum change in point depth
[In−1,Mn−1] previous intensity depth pair
[In,Mn] current intensity depth pair
RI camera rotation in image
tI camera translation in image

Output: C correspondence list of the form (p,p′,∆)
kC global point count
σ global intensity difference sum

Data: α thread block x-dimension
γ pixels per thread
ι shared memory local list
κ shared memory local index
blockIdx CUDA block index
threadIdx CUDA thread index

in parallel do
i← α ∗ γ ∗ blockIdx.x+ γ ∗ threadIdx.x // compute starting point
if threadIdx.x = 0 then

κ← 0
syncthreads()
for l← 0 to γ do // for each pixel in this thread

p← Li+l
z ←Mn(p)
if isValid(z) then // test if depth valid

(x′, y′, z′)> ← z(RI(p, 1)>) + tI // transform with estimate
p′ ← (x

′

z′
, y

′

z′
)> // project into previous image

if isInImage(p′) then
d←Mn−1(p′)
if isValid(d) and |z′ − d| ≤ dδ then // depth delta test

idx← atomicInc(κ)
ιidx ← (p,p′, In(p)− In−1(p′))// add valid correspondence

syncthreads()
b← γ ∗ threadIdx.x
for l← 0 to γ do // reduce local list into global list

a← b+ l
if a < κ then

atomicAdd(σ, ιa
2
∆) // sum total residual

idx← atomicInc(kC)
Cidx ← ιa

end
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populated including usage of σ′ for weighting. Equation 4.13 is then solved using a

tree reduction on the GPU followed by Cholesky factorisation of the linear system on

the CPU.

4.3 Combined Camera Pose Estimate

Reliance on only depth information for camera pose estimation limits the kinds of

scenes in which the camera pose will be properly constrained. Similarly, only relying

on photometric information in what are typically considered quite noisy RGB images

does not exploit the rich geometric information contained within the scene (and any

captured model) to its full extent. As a result, we adopt a combined approach which

reaps the benefits of both geometric-based frame-to-model tracking and photometric-

based frame-to-frame tracking. We combine the cost functions of both the geometric

and photometric estimates in a weighted sum. The sum of the RGB-D and ICP cost

is defined as

E = Eicp + wrgbdErgbd (4.14)

where wrgbd is the weight and was set empirically to 0.1 to reflect the difference in

metrics used for ICP and RGB-D costs. A key distinction between our approach and

that of Tykkälä et al. [122] is that we are combining two cost functions between a

frame-to-model registration (for the ICP component) and a frame-to-frame registra-

tion (for the RGB-D component). For each step we minimise the linear least-squares

problem by solving the normal equations

 Jicp

vJrgbd


>  Jicp

vJrgbd

 ξ =

 Jicp

vJrgbd


>  ricp

rrgbd

 (4.15)

(J>icpJicp + wrgbdJ
>
rgbdJrgbd)ξ = J>icpricp + vJ>rgbdrrgbd (4.16)
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where v =
√
wrgbd. The products J>J and J>r are computed on the GPU using a

tree reduction. The normal equations are then solved on the CPU using Cholesky

factorisation. The final estimate returns a locally optimal (in the least-squares sense)

camera pose which jointly minimises the photometric error between the current and

previous RGB-D frames and the geometric error between the current depth map and

the TSDF surface reconstruction. This combined method provides a very accurate

and stable trajectory estimate as well as surface reconstruction, which we expand

upon in Chapter 7.

It should be noted that although there are a number of atomic operations in Al-

gorithms 4.1 and 4.2, these are primarily operating on values contained in shared

thread block memory, minimising impact on execution performance and overall de-

gradation to serial execution. Our computational performance results in Chapter 7

demonstrate that the use of such atomic operations (in the standard reduction setting

they are used in here) does not hinder real-time performance.

4.4 Summary

This chapter has detailed our method for jointly utilising dense geometric and photo-

metric information between frames to robustly estimate the camera pose in challen-

ging environments. This is another key step towards developing a robust dense visual

SLAM system which can function in a wide variety of scenes. In contrast to other

dense reconstruction systems which mostly focus on using geometric information for

pose estimation [86, 10, 6, 61, 97, 132, 7], the contribution described in this chapter

enables reliable camera tracking in either geometrically sparse or poorly textured

areas. As well as being shown in Whelan et al. [126], this is also demonstrated in a

number of datasets evaluated in Chapter 7 in particular in comparison to the DVO

tracking system of Kerl et al. [62] given in Section 7.1.2.2.
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CHAPTER 5

Large Scale Dense Visual SLAM

In this chapter we describe our method for performing real-time large scale loop

closure. Using the techniques from Chapters 3 and 4 permits the reconstruction

of large scale dense 3D mesh-based maps in real-time, however like all egomotion

estimation systems drift will accumulate over space and time, warranting a method

to correct the map to achieve global consistency when possible. A simple approach to

this problem would be to associate each vertex in the mesh with the nearest camera

pose, optimise the pose graph and reflect the camera pose transformations in the mesh

vertices. This would however cause sharp discontinuities at points on the surface

where the association between camera poses changes and ignores other important

properties of the surface. For this reason we have chosen a non-rigid method of

correcting the map. We now frame the system as a more traditional SLAM setup

with a frontend (for camera tracking and surface extraction) and a backend (for pose

graph optimisation and map optimisation). A detailed system architecture diagram

is shown in Figure 5.1.
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Figure 5.1: System architecture diagram. Differently colored function blocks execute
in separate CPU threads. The ms quantity denotes the volume shifting threshold and
mp denotes the place recognition movement threshold.

The frontend is made up of the extended scale volumetric fusion method described

in Chapter 3 coupled with the combined geometric and photometric camera pose

estimation method described in Chapter 4. The final component of the frontend not

yet described is a visual place recognition module that relies on the DBoW place

recognition system [36] which we describe in Section 5.2.

The backend provides a means of performing deformation-based dense map cor-

rection making use of incremental pose graph optimisation coupled with a non-rigid

map optimisation. We use iSAM [56] to optimise the camera pose graph according

to loop closure constraints provided by our place recognition module. The optimised

trajectory is then used in conjunction with matched visual features to constrain a

non-rigid space deformation of the map. We adapt the embedded deformation tech-

nique of Sumner et al. [116] to apply it to large scale dense maps captured with a

pose graph backend and utilise efficient incremental methods to prepare the map for

deformation.

We apply the SLAM principal to our framework by building constraints between

multiple regions of the surface through frames anchored to the map via the place

recognition system. These frames (and associated global camera poses) are connected

to the pose graph, which upon optimisation propagates back to the surface through
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5.1. POSE GRAPH

the deformation. Following we provide a detailed description of each component

involved in the global consistency pipeline including pose graph representation, place

recognition and loop closure, deformation graph construction and map optimisation.

5.1 Pose Graph

All camera poses added to the pose graph are given in global coordinates, as described

in Section 3.3.2. A camera pose Pi is estimated for every processed frame. We evaluate

the trade offs of using every pose versus a subset of poses in Chapter 7. As discussed

in Section 3.3.2 some camera poses also have an associated cloud slice as shown

in Figure 5.2, where the relationship between pose Pγ and cloud slice Cj is shown.

This provides a useful association between camera poses and the extracted surface,

capturing both temporal and spatial proximity. In order to model the uncertainty of

inter-pose constraints derived from dense visual odometry we can approximate the

constraint uncertainty with the Hessian as Σ = (J>J)−1, where J is the combined

measurement Jacobian computed in Equation 4.16.

5.2 Place Recognition

We use Speeded Up Robust Feature (SURF) descriptors with the bag-of-words-based

DBoW loop detector for place recognition [36]. Adding every RGB-D frame to the

place recognition system is non-optimal, therefore we utilise a movement metric sens-

itive to both rotation and translation which indicates when to add a new frame to the

place recognition system. Defining r(R) : SO(3)→ R3 to provide the rotation vector

form of some rotation matrix R, we compute a movement metric between two poses

a and b that compounds both translation and rotation into a single quantity as:

mab =
∥∥r(R−1

a Rb)
∥∥

2
+ ‖ta − tb‖2 (5.1)
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Figure 5.2: Two-dimensional example showing the current position of the TSDF
shifting volume as a checkerboard pattern and the previously extracted cloud slices
as textured columns. Also shown is the pose graph as small green points as well as a
pose Pγ which caused a volume shift. The association between Pγ and the extracted
cloud slice is shown with a dotted red line. A k = 4 connected sequential deformation
graph is also shown, demonstrating the back-traversal vertex association algorithm
on a random vertex v.

For each frame we evaluate the movement distance between the current frame pose

and the pose of the last frame added to the place recognition system according to

Equation 5.1. If this metric is above some threshold mp, a new frame is added.

Empirically we found mp = 0.3 provides good performance. Alternatively the two

quantities can be separately thresholded such that motion is acknowledged when

either ‖r(R−1
a Rb)‖2 goes above a specified angle θt threshold or ‖ta − tb‖2 goes above a

distance mt threshold. We have not found place recognition rates to vary significantly

between schemes.

Upon receiving a new RGB-D frame [rgbi,di] the place recognition module first

computes a set of SURF keypoints and associated descriptors Ui ∈ Ω × R64 for that

frame. These features are cached in memory for future queries. The depth image

di is also cached, however to ensure low memory usage it is compressed in real-time

using lossless compression [22]. Following this, the existing bag-of-words descriptor
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database is queried. If a match is found the SURF keypoints and descriptors Um and

depth data dm for the matched image are retrieved for constraint computation. A

number of validation steps are performed to minimise the chance of false positives.

They are detailed in the following three subsections.

5.2.1 SURF Correspondence Threshold

Given Ui and Um we find correspondences by a k-nearest neighbour search in the

SURF descriptor space. We use the Fast Library for Approximate Nearest Neighbors

(FLANN) to perform this search and populate a set of valid correspondences G ∈

Ω×Ω, thresholding matches using an L2-norm between descriptors in R64. We discard

the loop closure candidate if |G| is less than some threshold; a value of 35 has been

found to provide adequate performance in our experiments.

5.2.2 RANSAC Transformation Estimation

Given G and dm, we first attempt to approximate a 6-DOF relative transformation

between the camera poses of frames i and m using a RANSAC-based 3-point al-

gorithm [34]. Each matching keypoint in G is back-projected from image m to a 3D

point, transformed according to the current RANSAC model and reprojected into the

image plane of frame i (using standard perspective projection onto an image plane)

where the reprojection error quantified by the L2-norm in R2 is used for outlier de-

tection. Empirically we chose a maximum reprojection error of 2.0 for inliers. If the

percentage of inliers for the RANSAC estimation is below 25% the loop closure is

discarded. Otherwise, we refine the estimated transformation by minimising all inlier

feature reprojection errors in a Levenberg-Marquardt optimisation.
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5.2.3 Point Cloud ICP

At this point only candidate loop closures with strong geometrically consistent visual

feature correspondences remain. As a final step we perform a non-linear ICP step

between di and dm. Firstly we back-project each point in both depth images to

produce two point clouds. In order to speed up the computation, we carry out a uni-

form downsampling of each point cloud in R3 using a voxel grid filter. Finally, using

the RANSAC approximate transformation estimate as an initial guess, we iteratively

minimise nearest neighbour correspondence distances between the two point clouds

using a Levenberg-Marquardt optimisation. We accept the final refined transforma-

tion if the mean L2
2-norm of all correspondence errors is below a threshold. Typically

we found a threshold of 0.01 to provide good results.

Once a loop closure candidate has passed all of the described tests, the relative

transformation constraint between the two camera poses is added to the pose graph

maintained by the iSAM module. Section 5.4 describes how this constraint is used to

update the map.

5.3 Space Deformation

Our approach to non-rigid space deformation of the map is based on the embedded

deformation approach of Sumner et al. [116]. Their system allows deformation of

open triangular meshes and point clouds; no connectivity information is required as

is the case with many deformation algorithms [58, 51]. Exploiting this characteristic,

Chen et al. applied embedded deformation to automatic skeletonised rigging and real-

time animation of arbitrary objects in their KinÊtre system [11]. Next we describe

our adaptation of embedded deformation to apply it to large scale dense maps with

a focus on automatic incremental deformation graph construction.
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Figure 5.3: Two-dimensional example of deformation graph construction. On the left
a spatially-constrained graph is constructed over a pre-loop closure map suffering from
significant drift. The nodes highlighted in red are connected to nodes which belong
in potentially unrelated areas of the map. On the right our incremental sampling and
connectivity strategy is shown (two-nearest neighbours for simplicity) which samples
and connects nodes along the pose graph, preventing unrelated areas of the map being
connected by the deformation graph.

5.3.1 Deformation Graph

Sumner et al. propose the use of a deformation graph to facilitate space deformation

of a set of vertices. A deformation graph is composed of nodes and edges spread

across the surface to be deformed. Each node Nl has an associated position Ng
l ∈ R3

and set of neighbouring nodes N (Nl). The neighbours of each node are what make

up the edges of the graph. Each node also stores an affine transformation in the form

of a 3× 3 matrix NR
l and a 3× 1 vector N t

l , initialised by default to the identity and

(0, 0, 0)> respectively. The effect of this affine transformation on any vertex which

that node influences is centered at the node’s position Ng
l .

5.3.2 Incremental Graph Construction

The original approach to embedded deformation relies on a uniform sampling of the

vertices in R3 to construct the deformation graph. Chen et al. substitute this with a
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method that uses a 5D orientation-aware sampling strategy based on the Mahalanobis

distance between surface points in order to prevent links in the graph between phys-

ically unrelated areas of the model [11]. Neither strategy is appropriate in a dense

mapping context as drift in odometry estimation before loop detection may cause

unrelated areas of the map to completely overlap in space. This issue also arises in

determining connectivity of the graph. Applying sampling and connectivity strategies

that are only spatially aware can result in links between completely unrelated points in

the map, as shown in Figure 5.3. The effects of applying a nearest neighbour strategy

are visualised in Figure 5.4. For this reason we derive a sampling and connectiv-

ity strategy that exploits the camera pose graph for deformation graph construction

and connection. The method is computationally efficient and incremental, enabling

real-time execution. Our sampling strategy is listed in Algorithm 5.1.

Algorithm 5.1: Incremental Deformation Node Sampling
Input: P camera pose graph made up of Ri and ti

i pose id of last added node
dp pose sampling rate

Output: N set of deformation graph nodes
do

l← |N |
if l = 0 then // init new graph with first pose

Ng
l ← t0

l← l + 1
i← 0

Plast ← Pi
for i to |P | do // from last added pose to newest pose

if ‖ti − tlast‖2 > dp then // add node to deformation graph
Ng
l ← ti

l← l + 1
Plast ← Pi

end

We connect deformation graph nodes returned by our sampling strategy in a

sequential manner, following the temporal order of the pose graph itself. That is to

say our set of graph nodes N is ordered. We sequentially connect nodes up to a value
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(i) (ii)

Figure 5.4: From left to right; (i) Highly distorted map produced when a naïve
nearest neighbour sampling and connectivity strategy is used; In this example, parts
of the floor close to the point of loop closure have been associated with the nearby
window through the deformation graph. When optimised, these parts of the scene
attempt to “stick together”, drastically distorting the surrounding geometry. (ii) Non-
distorted map loop closure using our proposed sampling and connectivity strategy.
When the deformation graph is intelligently constructed across the map using our
scheme, incorrect surface association problems as shown on the left are avoided.

k. We use k = 4 in all of our experiments. For example, a node l will be connected to

nodes (l± 1, l± 2). We show k = 2 connectivity in Figure 5.3. Note the connectivity

of end nodes which maintains k-connectivity.

5.3.3 Incremental Vertex Weighting

Each vertex v has a set of influencing nodes in the deformation graph N (v). The

deformed position of a vertex is given by:

v̂ =
∑

k∈N (v)

wk(v)
[
NR
k (v −Ng

k ) +Ng
k +N t

k

]
(5.2)

where wk(v) is defined as (all k summing to 1):

wk(v) = (1− ‖v −Ng
k ‖2 /dmax)

2 (5.3)
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Here dmax is the Euclidean distance to the k+ 1-nearest node of v. In previous work

based on this technique the sets N (v) for each vertex are computed in batch using a

k-nearest neighbour technique. Again, being based on spatial constraints alone this

method fails in the example shown in Figure 5.3. To overcome this issue we derive

an algorithm that assigns nearest neighbour nodes to each vertex using a greedy

back-traversal of the sampled pose graph nodes.

Referring back to Figure 5.2 and Section 3.3.2, we recall that each pose that causes

a volume shift has an associated set of vertices contained within a cloud slice. We

can exploit the inverse mapping of this association to map each vertex onto a single

pose in the pose graph. However, the associated pose is at least a distance of vd
2
away

from the vertex, which is not ideal for the deformation. In order to pick sampled pose

graph nodes for each vertex that are spatially and temporally optimal, we use the

closest sampled pose to the associated cloud slice pose as a starting point to traverse

back through the sampled pose graph nodes to populate a set of candidate nodes.

From these candidates the k-nearest neighbours of the vertex are chosen. We list

the algorithm for this procedure in Algorithm 5.2 and provide a visual example in

Figure 5.2.

The per-vertex node weights can be computed within the back-traversal algorithm,

which itself can be carried out incrementally online while the frontend volume shifting

component provides new cloud slices. The ability to avoid computationally expensive

batch steps for deformation graph construction and per-vertex weighting by using

incremental methods is the key to allowing low latency online map optimisation at

any time.
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Algorithm 5.2: Back-Traversal Vertex Association
Input: C cloud slices

N set of deformation graph nodes
bp number of poses to traverse back
PCj pose associated with cloud slice Cj

Output: N (v) for each v
do

foreach Cj do
foreach v ∈ Cj do // for each vertex in each cloud slice

l← binary_search_closest(PCj , N) // get neighbouring nodes
N ′ ← ∅
n← 0
for i← 0 to bp do // traverse back and add each to a list

N ′n ← Nl

n← n+ 1
l← l − 1

sort_by_distance(N ′,v)
N (v)← N ′1→k // store k-nearest nodes

end

5.4 Optimisation

On acceptance of a loop closure constraint as described in Section 5.2 we perform

two optimisation steps, firstly on the pose graph and secondly on the dense vertex

map. The pose graph optimisation provides the measurement constraints for the

dense map deformation optimisation in place of user specified constraints that were

necessary in the original embedded deformation approach. Pose graph optimisation is

carried out using the iSAM framework [56]. We benefit from the incremental sparse

linear algebra representation used internally in iSAM, such that execution time is

reasonable in terms of online operation.

5.4.1 Map Deformation

Sumner et al. define three cost functions over the deformation graph and user con-

straints to optimise the set of affine transformations over all graph nodes N . The
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first maximises rigidity in the deformation:

Erot =
∑
l

∥∥∥NR
l

>
NR
l − I

∥∥∥2

F
(5.4)

Where Equation 5.4 is the alternative Frobenius-norm form provided by Chen et

al. [11]. The second is a regularisation term that ensures a smooth deformation

across the graph:

Ereg =
∑
l

∑
n∈N (Nl)

∥∥NR
l (Ng

n −N
g
l ) +Ng

l +N t
l − (Ng

n +N t
n)
∥∥2

2
(5.5)

The third is a constraint term that minimises the error on a set of user specified vertex

position constraints Q, where a given constraint Qp ∈ R3 and φ(v) is the result of

applying Equation 5.2 to v:

Econ =
∑
p

‖φ(v)−Qp‖2
2 (5.6)

We link the optimised pose graph to the map deformation through the Econ cost

function. With P being the pose graph (composed of rotations and translations Ri

and ti) before loop constraint integration we set P ′ to be the optimised pose graph

returned from iSAM. We then add each of the camera pose translations to the deform-

ation cost as if they were user specified vertex constraints, redefining Equation 5.6

as:

EconP =
∑
i

‖φ(ti)− t′i‖
2
2 (5.7)

A uniform constraint distribution across the surface obtained from this parameterisa-

tion aids in constraining both surface translation and orientation. However at some

points the surface orientation may not be well constrained. In order to overcome this

issue we add additional vertex constraints between the unoptimised and optimised 3D
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back-projections of each of the matched inlier SURF keypoints detected in Section

5.2, where Pi (Ri and ti) is the camera pose of the matched loop closure frame:

Esurf =
∑
q

‖φ((RiGq) + ti)− ((R′iGq) + t′i)‖
2

2 (5.8)

The final total cost function is defined as:

wrotErot + wregEreg + wconPEconP + wsurfEsurf (5.9)

With wrot = 1, wreg = 10, wconP = 100 and wsurf = 100, we minimise this cost func-

tion using the iterative Gauss-Newton algorithm choosing weighting values in line

with those used by Sumner et al. [116]. The optimisation consistently converges to

a satisfactory result with these weights, similar to the findings of Chen et al. [11].

As highlighted in previous work, the Jacobian matrix in this problem is sparse, en-

abling the use of sparse linear algebra libraries for efficient optimisation. We use the

CHOLMOD library to perform sparse Cholesky factorisation and efficiently solve the

system [16]. We then apply the optimised deformation graph N to all vertices over all

cloud slices C in parallel across multiple CPU threads. As discussed in Section 3.3.2

we compute an incremental mesh surface representation of the cloud slices as they

are produced by the frontend. The incremental mesh can be deformed by applying

the deformation graph to its vertices. In our experience an incremental mesh typ-

ically contains more minuscule holes than a batch mesh, which in path planning is

functionally almost identical but less visually appealing. In all results we show the

batch mesh computed over the set of optimised vertices.

64



5.5. SUMMARY

5.5 Summary

This chapter has described our method for achieving large scale dense visual SLAM

using the frontend components described thus far combined with a pose graph optim-

ation framework and a novel coupling between non-rigid space deformation and incre-

mental dense mapping. The joining of pose graph optimisation with non-rigid space

deformation optimisation in an efficient incremental online fashion is a key contribu-

tion of this thesis necessary to obtain globally consistent dense surface reconstructions

over large scales in real-time, something which has not yet been demonstrated by other

related systems. By adopting incremental deformation graph sampling and connectiv-

ity while anchoring the pose graph to the deformation constraint in an asynchronous

manner the system is capable of closing multiple loops in very large trajectories on-

line without any expensive batch or post-processing steps. This is demonstrated

more clearly in Chapter 7, specifically in Section 7.1.2 where superior scalability per-

formance and surface reconstruction quality is demonstrated in comparison to other

related works.
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CHAPTER 6

Map Simplification and Higher Level Representation

In the previous chapters we have presented a system for capturing large scale dense

mesh-based maps in real-time. While this representation is extremely useful for a

number of applications including visualisation and object recognition, in certain scen-

arios it is not computationally efficient to work with. This motivates the need for

an alternative representation to one which contains millions of vertices that is more

useful for real-time navigation and mobile robot localisation. In this chapter we give

an overview of our system for simplifying dense point cloud maps into triangulated

planar models. Individual sections detail batch planar segmentation, incremental

planar segmentation, triangulation of planar segments and texture generation.

6.1 Building Blocks

Our batch system architecture is shown in Figure 6.1. It takes a point cloud as input

and generates a triangular mesh as output. If the input is a colored point cloud, the
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Figure 6.1: Parallel system architecture to process point clouds of large scale open
scene scans or maps.

output can also be a textured 3D model. The processing pipeline consists of three

main blocks.

Plane Detection segments the input point cloud into planar and non-planar regions

to enable separate triangulation and parallel processing. This design is especially

beneficial for real-world environments, where multiple independent planar surfaces

occur frequently. In our system we apply a local curvature-based region growing al-

gorithm for plane segmentation, which was shown to out perform RANSAC-based

approaches [77]. Although not a contribution of this thesis, in the interest of com-

pleteness we include a description of this algorithm in Section 6.3. In the incremental

scenario, the plane detection block continuously runs and only provides planar seg-

ments to be triangulated when they are marked as finalised (as detailed in Section 6.4).

Non-Planar Segment Triangulation generates a triangular mesh for non-planar

segments using the GPT algorithm [79]. Given a colored point cloud, we preserve

the color information for each vertex in the output mesh. Dense triangular meshes

with colored vertices can be rendered (with Phong interpolation) to appear similar

to textured models. Additionally, as opposed to using textures, maintaining color in

vertices of non-planar segments provides easier access to appearance information for

point cloud based object recognition systems.

Planar Segment Triangulation triangulates planar segments and textures the mesh

afterwards, if given a colored point cloud. In our system we improve the decimation
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algorithm of Ma et al. [77] and further develop a more accurate and robust solution

for triangulation. A detailed description of our algorithm is provided in Section 6.5.

Our method for planar segment texture generation is described in Section 6.6.

6.2 Computationally Efficient Architecture

To improve computational performance, a multi-threaded architecture is adopted,

exploiting the common availability of multi-core CPUs in modern hardware. We ap-

ply a coarse-grained parallelisation strategy, following the Single Program Multiple

Data (SPMD) model [15]. Parallel triangulation of planar segments is easily accom-

plished by dividing the set of segments into subsets that are distributed across a

pool of threads. For maximum throughput of the entire pipeline, segmentation and

triangulation overlap in execution. With an n-core CPU, a single thread is used for

segmentation and the remaining n− 1 threads are used for triangulation, each with a

queue of planar segments to be processed. Upon segmentation of a new planar region,

the segmentation thread checks all triangulation threads and assigns the latest seg-

ment to the thread with the lowest number of points to be processed. This strategy

ensures an even task distribution among all threads. When plane segmentation is

finished, the segmentation thread begins the non-planar triangulation in parallel to

the other triangulation threads.

6.3 Planar Segmentation

In this section we review the curvature-based algorithm used to segment multiple

planes from a large 3D point cloud.
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6.3.1 Curvature-Based Segmentation Algorithm

Planes are characterised by their perfect flatness and can be described as sets of points

that have zero curvature. In practice, open scene point cloud data can be quite noisy

and points belonging to planes do not have a curvature of exactly zero. However, the

curvature of points lying on planes is still low enough to distinguish them from points

belonging to non-planar surfaces. This observation motivates the functionality of this

algorithm, which is partially developed from the work of Rabbani et al. [96].

The curvature-based algorithm consists of an iterative process. Firstly, the normal

of the next plane to be segmented is chosen. This is done by finding the point with

the lowest curvature from the set of remaining unsegmented points. From here a

region growing process begins using the lowest curvature point as the first seed point.

In each iteration the k-nearest neighbours of the current seed point are determined

and their normals are compared to the estimated plane normal. A neighbouring

point is added to the current segment if its normal does not deviate from the plane

normal beyond an angle threshold. A qualified neighbour is also used as a new seed

point for further region growing if its curvature is sufficiently small. When no more

points can be added to the current segment, a plane is considered fully segmented.

Afterwards, the whole process restarts with the remaining set of unsegmented points,

until the entire cloud has been processed. The pseudocode of the algorithm is listed

in Algorithm 6.1.

There are two major differences between this algorithm and the algorithm of

Rabbani et al. [96]. The first difference is the integration of new points into the

current segment. The original algorithm always updates the normal used for the

integration of new points from the current seed point which may introduce points

belonging to areas of moderate curvature in extracted segments. In this algorithm,

the plane normal is fixed to the normal of the first seed point and only this normal is

used throughout the segmentation of a single plane. Given that the first seed point
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Algorithm 6.1: Curvature-Based Plane Segmentation.
Input: Point cloud made of points pi ∈ R3 with normals ni and curvatures ci

θth angle threshold
cth curvature threshold

Output: Set of planar segments
while points remain unsegmented or the queue is not empty do

if the queue is empty then
pick a seed point ps with the lowest curvature
set the plane normal np to be the normal of ps

else
pop out a seed point ps from the queue

mark ps as segmented
compute the k-nearest neighbours of ps
foreach unsegmented neighbour pi do

if arccos (np,ni) < θth then
add pi to the current segment, mark pi segmented if ci < cth then

add pi to the queue

if the queue is empty then
output the current segment as a plane

has the lowest curvature available, its normal can be assumed to be a good estimation

for the normal of the entire planar segment. With this modification the detection of

smoothly-connected shapes, such as spheres and cylinder-like structures is avoided.

The second modification is concerned with the estimation of point curvature. The

algorithm of Rabbani et al. uses the residual of a least-squares plane fit as a substitute

for curvature. In this algorithm the curvature is directly estimated using the original

points. A necessary preprocessing step for this algorithm is normal estimation for

point clouds. This is accomplished by local Principal Component Analysis (PCA) [82].

The PCA method for normal estimation also provides the curvature quantity using

the following equation:

c =
λ0

λ0 + λ1 + λ2

, λ0 ≤ λ1 ≤ λ2, (6.1)

where λ0, λ1 and λ2 are the eigenvalues from the PCA process [94]. These eigenvalues
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λ0, λ1 and λ2 indicate the smallest, medium and largest variation along the directions

specified by their corresponding eigenvectors. For points belonging to an ideal plane,

we have λ0 = 0 and hence c = 0. In the presence of noise, variable c becomes larger

than zero.

This curvature-based algorithm works with two parameters. The first parameter

θth specifies the maximum angle between the estimated plane normal and the normal

of a potential point on the plane. Typically a 10° angle works well for noisy point

clouds. The second parameter cth is the curvature threshold, which is used to verify

whether a point should be designated as a seed point for region growing. Empirically

this threshold is set to a value below 0.1.

6.4 Incremental Planar Segmentation

In this section we describe our method for incrementally segmenting planes from

a point cloud map which is being incrementally produced in real-time by a dense

mapping system, e.g. as described in the previous chapters. Our method involves

maintaining a pool of unsegmented points which are either segmented as new planes,

added to existing planes or deemed to not belong to any planar segment. Firstly

we define a distance-based plane merging method that determines whether or not to

merge two planar segments based on the distance between the points in each segment.

We list this as Algorithm 6.2 and henceforth refer to it as the mergeP lanes method.

6.4.1 Segment Growing

Assuming the input to our system is a small part of a larger point cloud map that

is being built up over time we must define a method for growing existing planar

segments that were found in our map in the previous timestep of data acquisition.

We maintain a persistent pool of unsegmented pointsM where each pointMi ∈ R3
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Algorithm 6.2: Method for merging two planar segments.
Input: A planar segment with normal An, point cloud AC and timestep At

B planar segment with normal Bn and point cloud BC
BH concave hull of B
dth distance threshold

Output: True or False if segments were merged or not
foreach point hi in BH do

if ∃ACk s.t. ‖hi −ACk‖2 < dth then
An ← (An|AC|+ Bn|BC|)/(|AC|+ |BC|)
At ← 0
append BC to AC
compute kd-tree of AC
return True

return False

and also contains a timestep value Mit , initially set to zero. When a new set of

points are added to the map, they are added to the set M, which is then sorted

by the curvature of each point. A batch segmentation of M is then performed (as

described in Section 6.3), producing a set of newly segmented planes N . From here

we perform Algorithm 6.3, which will grow any existing segments and also populate

the set S, that maintains a list of pairs of planes which are similar in orientation but

not close in space. Algorithm 6.4 lists the method for merging similar planes that

eventually grow close enough in space to be merged together.

Each time new data is added to the map Algorithms 6.3 and 6.4 are run, after

which the timesteps values of all remaining unsegmented points inM are incremented

by 1. Points with a timestep value above a specified threshold are removed from the

point pool and marked as non-planar. Algorithm 6.3 will add new segments to the

map, grow recently changed segments and ensure that similar planes which have the

potential to grow into each other are kept track of. Algorithm 6.4 merges segments

which may not have initially been close together in space but have grown near to each

other over time. Figure 6.2 shows an example of the incremental planar segmentation

process in action.
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Algorithm 6.3: Method for growing planar segments.
Input: N set of new planar segments with normals Nin , point clouds NiC and

timesteps Nit
Q set of existing planar segments with normals Qin , point clouds QiC
and timesteps Qit
Ct current position of sensor producing the map
nth normal merge threshold
tth timestep threshold
tdth timestep distance threshold

Output: S set of pairs of similar but non-merged segments
foreach newly segmented plane Ni do
R ← ∅
gotP lane← False
foreach existing plane Qi do

if !Qifinalised and arccos (Nin ,Qin) < nth then
compute concave hull H of Ni
gotP lane← mergeP lanes(Qi,Ni,H)
if gotP lane then

break
else

add Qi to R

if !gotP lane then
compute kd-tree of NiC
Nit ← 0
add Ni to Q
foreach similar plane Ri do

add (Ni, Ri) tuple to S
remove all points NiC fromM

foreach existing plane Qi do
Qit ← Qit + 1
if Qit > tth and ∀q ∈ QiC , ‖Ct − q‖2 > tdth then
Qifinalised ← True

foreach pair of similar planes Si do
if Si1finalised or Si2finalised then

delete Si
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Algorithm 6.4: Merging segments that have grown closer.
Input: S set of pairs of similar but non-merged segments with point clouds SiC

and alpha values Siα
Q set of existing planar segments

foreach pair of similar planes Si do
gotP lane← False
if |Si1C | > |Si2C | then

swap Si1andSi2
if Si1α ! = |Si1C | then

compute concave hull Si1H of Si1
Si1α ← |Si1C |

gotP lane← mergeP lanes(Si2 ,Si1 ,Si1H)
if gotP lane then

foreach existing plane Qi do
if Qi == Si1 then

delete Qi
break

foreach pair of similar planes Sj do
if i == j then

continue
if Sj1 == Si1 then
Sj1 ← Si2

else if Sj2 == Si1 then
Sj2 ← Si2

if Sj1 == Sj2 then
delete Sj

delete Si
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(i) (ii) (iii) (iv)

Figure 6.2: Incremental planar segmentation shown with point cloud and camera
trajectory (in pink) shown above and resulting planar segments below. From left to
right: (i) Initially there are four segments extracted from the point cloud; (ii) As
the camera moves and more points are provided, the three segments on the left are
grown (as described in Algorithm 6.3); (iii) The upper-right most segment grows large
enough to be merged with the small segment on the right (as in Algorithm 6.4); (iv)
Once the camera has moved far enough away from the two upper segments they are
finalised.

6.5 Triangulation of Planar Segments

In this section, our algorithm for planar segment decimation and triangulation is

described. A simplified mesh of a planar segment is generated by removing redundant

points that fall within the boundary of the segment. In the following text the input

planar segment is denoted as P , made up of points p ∈ R3. With colored point

clouds, each point p also contains (R,G,B) color components.

6.5.1 QuadTree-Based Decimation

Planar segments have a simple shape which can be well described by points on the

boundary of the segment. Interior points only add redundancy to the surface repres-

entation and complicate the triangulation results. Figure 6.3 shows an example of

this where the planar segment is over-represented with thousands of triangles gener-

ated with the GPT algorithm using all planar points. However, a naïve solution that

removes all interior points and triangulates only with boundary points normally leads
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Figure 6.3: Undesirable planar triangulation: the left GPT mesh over-represents the
shape while the right boundary-based Delaunay triangulation produces unnatural
skinny triangles.

(i) (ii) (iii) (iv) (v) (vi)

Figure 6.4: Planar decimation and triangulation (boundary and interior points are
dark blue and teal, respectively), from left to right: (i) Initialise by subdividing the
quadtree bounding box; (ii) Classify nodes into interior (teal), boundary (dark blue)
and exterior (black); (iii) Merge interior nodes; (iv) Generate vertices; (v) Point-based
triangulation; (vi) Polygon-based triangulation.
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to skinny triangles, again shown in Figure 6.3. With these observations in mind, the

quadtree proves to be a useful structure to decimate the interior points of a segment

while preserving all boundary points for shape recovery [77].

6.5.1.1 Preprocessing

To prepare a planar segment for decimation it is first denoised and aligned to the x-y

axes. We employ Principal Component Analysis (PCA) over the planar segment to

compute a least-squares plane fit as well as an affine transformation T for x-y axes

alignment, after which all points belonging to the segment are orthogonally projected

onto the axis-aligned best fit plane. The aligned planar segment is denoted as Pt.

Afterwards, the boundary points of Pt are extracted as an α-shape [24, 93]. We

denote the boundary as a concave hull H of the planar segment, which is an ordered

list of vertices describing a polygon for which ∀p ∈ Pt and p /∈ H, p is inside the

polygon.

6.5.1.2 Decimation

Planar segment point decimation consists of four steps as shown in Figure 6.4. Firstly,

a quadtree is constructed by subdividing the bounding box of Pt into a uniform

grid of small cells. Typically the 2D bounding box is non-square, in which case the

smallest side is extended to equalise the width and height. The resulting bounding

box b is composed of a minimum point bmin and a maximum point bmax, with a

dimension s = bmax − bmin. Secondly, the quadtree nodes are classified as either

interior, boundary or exterior. An interior node is fully contained within the polygon

H, while an exterior node is fully outside. All others are boundary nodes, which

intersect H. Thirdly, the interior nodes of the quadtree are merged to create nodes

of variable size, typically largest around the center and becoming increasingly fine-

grained when approaching the boundary. When a parent node contains only interior
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children, the four child nodes are merged into one. The merged node is then also

classified as interior, allowing further recursive merging with its siblings. Finally, the

corner points of the remaining interior nodes are extracted as the new internal vertices

I of Pt, while all boundary points H are preserved.

6.5.2 Triangulation

We provide two methods for triangulation of a simplified planar segment: 1) a

low-complexity Point-Based Triangulation and 2) an alternative Polygon-Based Tri-

angulation. Both methods make use of the Constrained Delaunay Triangulation

(CDT) [23].

6.5.2.1 Point-Based Triangulation

The point-based approach is a low-complexity triangulation method, where CDT is

directly applied to the decimated segment. The ordered boundary vertices H serve

as constraining edges and the inner vertices I are used as input points. An example

output is shown in Figure 6.4. Point-based triangulation has all of the advantages

of Delaunay triangulation but does produce more triangles than the polygon-based

approach described next.

6.5.2.2 Polygon-Based Triangulation

The regular grid pattern of the inner vertices I immediately lends itself to a simple

triangulation strategy, where two right-angled triangles are created over each interior

node of the merged quadtree. To complete the triangulation, the space between the

interior right-angled triangles and the boundary points H is triangulated using CDT.

Two sets of constraining edges are input to the CDT, one being H and the other

being a rectilinear isothetic polygon that bounds interior triangles. This two-step

triangulation is similar to the QTB algorithm of Ma et al. [77]. However, a major
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Figure 6.5: Degree grid of part of a planar segment (0-valued cells hidden). The
underlined bold values are the degrees of the inner vertices I.

difference lies in how the boundary points are connected. With our CDT-based

approach, we avoid overlapping triangles and artificial holes that would normally be

produced by the QTB algorithm.

Efficient computation of the polygon which exactly bounds the interior vertices

I is non-trivial, since the interior nodes provide only sparse spatial information for

geometric operations. We invoke a solution that maps the interior vertices onto a

binary image, where the bounding polygon can be easily extracted using a greedy

nearest-neighbour tracing algorithm normally used in image processing [78].

The binary image is represented by an n × n array, where n = 2d+1 + 1 and d

is the quadtree depth. This provides a 2D grid large enough to represent the empty

space between the two vertices of any edge. To project a vertex v ∈ I onto the array,

a mapping function f : R3 → N2 is defined by

f(v) =
n(v − bmin)

s
, (6.2)

where b is the bounding box and s is its dimension. The division is performed on

an element-by-element basis. Given that I is aligned to the x-y axes, function f

effectively maps from R2 to N2. We associate two elements with each array cell: a
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reference to the mapped vertex (effectively implementing f−1) and a degree value to

quantify vertex connectivity in the underlying quadtree. Initially, the degree is zero

for all cells. During the triangulation of I, the degree grid is populated. When a

vertex is extracted from the merged quadtree, the reference of the corresponding cell

is updated and its degree is increased by 1. This policy alone cannot fully recover

the degree of a given vertex, since only the two ends of an edge are obtained from

quadtree vertices. To overcome this problem, all cells between the two ends of an edge

also have their degree increased by 2. Figure 6.5 shows part of the degree grid of a

planar segment. If we consider the interior triangulation to be a graph, the 2D degree

grid resolves the degree of each vertex. All non-zero cells are treated as “1-valued”

foreground pixels and the rest as “0-valued” background pixels in the binary image

representation.

6.6 Texture Generation

In this section we present our texture generation algorithm for planar segments using

dense colored point clouds. Due to the significant loss of colored vertices during

decimation, the appearance of a simplified planar segment is greatly diminished. We

therefore generate textures prior to decimation for the purpose of texture mapping

the simplified planar mesh.

We generate textures by projecting the vertex colors of the dense planar segment

onto a 2D RGB texture E(x, y) ∈ N3. We define a texture resolution d as some

resolution factor r times s, where s assumes the size of the bounding box b. In our

experiments a value of r = 100 provides good quality textures. The resolution factor

can also be automatically computed based on point cloud density. Each pixel a ∈ E
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(i) (ii)

Figure 6.6: Texture generation, from left to right: (i) Plane segment from a colored
point cloud; (ii) Generated texture.

is first mapped to a 3D point v by a mapping function g : N2 → R3, defined as

g(a) =
as

d
+ bmin, (6.3)

with an element-by-element calculation. Since Pt is aligned to the x-y axes, the

function g effectively maps to R2. A colored point corresponding to v in Pt is found

by a nearest neighbour search using a kd-tree. We have chosen this approach as it

produces good quality textures while being computationally inexpensive. However, it

can be easily extended to produce even higher quality textures by averaging a number

of k-nearest neighbours. Algorithm 6.5 describes the texture generation process.

Figure 6.6 shows an input planar segment and the output texture.

Algorithm 6.5: Vertex color to texture.
Input: Pt set of transformed input vertices

H concave hull of Pt
Output: E 2D RGB texture
foreach pixel p in E do

v← g(p)
if v is inside H then

n← nearest-neighbour of v in Pt
p← (nR,nG,nB)

else
p← (0, 0, 0)
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When texture mapping the final planar mesh, the uv texture coordinates U for

the vertices O of each face are computed with the inverse function g−1 : R3 → N2,

derived from Equation (6.3) as

g−1(v) =
d(v − bmin)

s
. (6.4)

With x-y axes aligned points, g−1 is actually mapping from R2. Algorithm 6.6 de-

scribes the uv-coordinates computation. The list U guarantees a 1-to-1 mapping to

the set O.

Algorithm 6.6: uv texture coordinate calculation.
Input: O set of final face vertices
Output: U uv texture coordinates for O
foreach vertex v in O do

a← g−1(v)
u← ax

dx

v ← 1.0− ay
dy

Add (u, v) to U

Any objects lying on a planar segment are completely excluded from the texture

and not projected onto the plane. In fact, the generated texture implicitly provides

the Voronoi diagram of the face of the object lying on any plane, which in turn

provides position and orientation information of any object lying on a segmented

plane, as shown in Figure 6.7.

6.7 Summary

This chapter has detailed our method for simplifying dense point cloud maps into tri-

angulated planar models in an accurate and computationally efficient manner. As we

present in detail in Chapter 7, the approach we describe is superior to previous related

methods on a number of both quantitative and qualitative measures, discussed spe-
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(i) (ii)

Figure 6.7: Implicit object information from texture generation, from left to right:
(i) Input colored point cloud; (ii) Generated texture with implicit Voronoi diagrams
and locations of objects resting on the plane highlighted.

cifically in Section 7.2. The contributions described in this chapter have immediate

implications in the field of real-time robotics, with quick incremental online methods

being of high importance. This is further justified in a real-world online robotics

experiment which we describe in Chapter 8, demonstrating the utility and applicab-

ility of the map representation provided by the system described in this chapter (in

particular when used in conjunction with systems such as the Kinect Monte Carlo

Localisation (KMCL) system of Fallon et al. [29]).
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CHAPTER 7

Experimental Results

In this chapter we present extensive experimental results on the techniques described

in Chapters 3 through 6. Chapters 3 through 5 are concerned with accurate camera

motion and scene structure estimation, which we evaluate different aspects of in

Section 7.1. Chapter 6 is concerned with reducing the complexity of the captured

scene models and is evaluated on a number of metrics in Section 7.2.

7.1 Dense Visual SLAM

We evaluate our SLAM system both quantitatively and qualitatively in terms of

trajectory estimation, surface reconstruction and computational performance. We

processed a combined total of over 79,000 unique RGB-D frames in our evaluation.
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Figure 7.1: Boxplot of the ATE RMSE in metres per sequence evaluated. In each
box the red central line is the median, the box edges the 25th and 75th percentiles
and the whiskers extend to the minimum and maximum estimates. Each dataset was
ran ten times to account for the randomness induced by the place recognition system
in Section 5.2.

7.1.1 Trajectory Estimation

To evaluate the accuracy of our camera trajectory estimation we present results on

the widely used RGB-D benchmark of Sturm et al. [115]. This benchmark provides

synchronised ground truth poses for an RGB-D sensor moved through an environ-

ment, captured with a highly precise motion capture system. We evaluated multiple

runs over ten datasets with quantitative results shown in Table 7.1 and a boxplot

shown in Figure 7.1. We use the absolute trajectory (ATE) root-mean-square error

metric (RMSE) to evaluate our system, which measures the root-mean-square of the

Euclidean distances between all estimated camera poses and the ground truth poses

associated by timestamp [115]. A brief description of each of the datasets captured

and evaluated in this section is provided below (all datasets were captured by a human

in a handheld manner);

1. fr1/desk: A 23 second trajectory over 9 metres containing several sweeps over

four desks in a typical office environment.

85



7.1. DENSE VISUAL SLAM

2. fr1/desk2: A 24 second trajectory over 10 metres containing several sweeps over

four desks in a typical office environment.

3. fr1/room: A 48 second trajectory over 16 metres containing a full 360 degree

sweep of the inside of a small office room.

4. fr1/xyz: A 30 second trajectory over 7 metres where the sensor is pointed at

an office environment and contains (mostly) only translatory motions along the

sensor’s principal axes.

5. fr1/rpy: A 27 second trajectory over 1 metre where the sensor is kept (mostly)

fixed in translation and rotated around all three principal axes.

6. fr1/plant: A 41 second trajectory over 14 metres containing a full 360 degree

scan of a small potted plant in an office environment.

7. fr2/desk: A 99 second trajectory over 19 metres containing a full 360 degree

scan of a cluttered desk in a large open indoor environment.

8. fr2/xyz: A 122 second trajectory over 7 metres where the sensor is pointed at

an office environment and contains (mostly) only translatory motions along the

sensor’s principal axes.

9. fr3/long: A 87 second trajectory over 21 metres where the sensor is carried

around a full 360 degree scan of a large two sided desk setup in an open indoor

environment.

10. fr3/nst: A 56 second trajectory over 13 metres containing a small loop around

a highly textured ground plane with no strong geometric features.

Consistent performance is achieved on all sequences evaluated, with a notably

higher error on the fr1/desk2 and fr1/room datasets (visually apparent by the large

difference between the estimated trajectories and ground truth trajectories shown
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Dataset RMSE (m) Median (m) Max (m) ω̄ (◦−1)
fr1/desk 0.0407 0.0352 0.0905 23.33
fr1/desk2 0.0747 0.0639 0.2309 29.31
fr1/room 0.0813 0.0739 0.2511 29.88
fr1/xyz 0.0180 0.0155 0.0392 8.92
fr1/rpy 0.0311 0.0213 0.0991 50.15
fr1/plant 0.0500 0.0425 0.1148 27.89
fr2/desk 0.0376 0.0315 0.0879 6.34
fr2/xyz 0.0341 0.0234 0.0979 1.72
fr3/long 0.0329 0.0297 0.0698 10.19
fr3/nst 0.0372 0.0335 0.0735 7.43

Table 7.1: Statistics on ATE on evaluated datasets. Trajectory values are in metres
as the mean over ten runs of each dataset. The mean angular velocity is given as ω̄
in degrees per second, retrieved from the dataset specifications.

in Figure 7.2). This can be explained by the high average angular velocity on these

sequences which causes motion blur, increases the effect of rolling shutter and violates

the assumption of projective data association. From the results it can be seen that

a higher RMSE is correlated with a high average angular velocity. Provided there is

a low standard deviation in frame rate and good overlap between successive frames

a strong trajectory estimate is achievable. Figure 7.2 shows two dimensional plots of

the differences between the estimated trajectories and the ground truth trajectories.

It should be noted that the subfigures within Figure 7.2 are rendered at varying

scales to emphasise the variation within the datasets. Hence, for example, although

the error for fr1/rpy is visually pronounced in the figure, as shown in Table 7.1 the

translational error is at a similar order of magnitude to the other datasets. In all real

world datasets evaluated the auto exposure and auto white balance features of the

RGB-D camera were enabled.

7.1.1.1 Comparative Evaluation

We compare the trajectory estimation performance of our system to three recent

state-of-the-art visual SLAM systems, DVO SLAM of Kerl et al. [63], RGB-D SLAM

of Endres et al. [26] and multi-resolution surfel maps (MRS) of Stückler et al. [113].
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Figure 7.2: Two dimensional plot of estimated trajectories versus ground truth tra-
jectories on evaluated sequences.
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Table 7.2 summarises the results, where our values represent the best estimate over

ten runs. From these we can see the performance of our system is comparable to

other leading approaches, where performance of each algorithm is typically within no

more than 3cm in total RMSE. We acknowledge the strong performance of the DVO

SLAM system in trajectory estimation and perform a further comparison with their

system in terms of reconstruction accuracy and larger trajectories in Section 7.1.2.2.

We also provide a small comparison of results between our system and benchmark

results provided by Meilland and Comport [81] from their unified keyframe SLAM

system in Tables 7.3 and 7.4, again showing comparable performance (using their

chosen metric of ATE Median and Max error, as opposed to RMSE).

In summary we can conclude from these trajectory estimation comparison results

that the performance of the pose estimation component of the presented SLAM system

is on par with other related state of the art systems. No one system scores the

lowest error on all of the evaluated datasets but all systems are consistent in their

performance, never more than 10cm away from the ground truth absolute trajectory.

However, a large focus of this work has been on scalable dense surface reconstruction

which cannot be evaluated by looking at trajectory estimates alone. In the following

section we address the surface reconstruction quality and scalability aspect in more

detail.

7.1.2 Surface Reconstruction

We present a number of quantitative and qualitative results on evaluating the surface

reconstructions produced by our system. In our experience a high score on a camera

trajectory benchmark does not always imply a high quality surface reconstruction

due to the frame-to-model tracking component of the system. We found that al-

though other methods for camera pose estimation may score better on benchmarks,

the resulting reconstructions are not as accurate if frame-to-model tracking is not
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Dataset Ours (m) DVO (m) RGB-D (m) MRS (m)
fr1/desk 0.037 0.021 0.023 0.043
fr1/desk2 0.071 0.046 0.043 0.049
fr1/room 0.075 0.053 0.084 0.069
fr1/xyz 0.017 0.011 0.014 0.013
fr1/rpy 0.028 0.020 0.026 0.027
fr1/plant 0.047 0.028 0.091 0.026
fr2/desk 0.034 0.017 0.057 0.052
fr2/xyz 0.029 0.018 0.008 0.020
fr3/long 0.030 0.035 0.032 0.042
fr3/nst 0.031 0.018 0.017 -

Table 7.2: Comparison of ATE RMSE on evaluated datasets and SLAM systems. All
units given are in metres. MRS was unable to produce an estimate on the fr3/nst
dataset.

Dataset Ours (m) Unified (m)
fr1/desk 0.031 0.018
fr2/desk 0.028 0.093
fr1/room 0.068 0.144
fr2/large_no_loop 0.256 0.187

Table 7.3: Comparison of ATE Median error on evaluated datasets and SLAM sys-
tems. All units given are in metres.

Dataset Ours (m) Unified (m)
fr1/desk 0.078 0.066
fr2/desk 0.079 0.116
fr1/room 0.231 0.339
fr2/large_no_loop 0.878 0.317

Table 7.4: Comparison of ATE Max error on evaluated datasets and SLAM systems.
All units given are in metres.
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being utilised. We evaluate seven different datasets captured in a handheld fashion

across a wide range of environments, demonstrating the viability of our system for

use over large scale trajectories both indoors and outdoors (within sensing limita-

tions) and across multiple floors. It should be noted that it is technically possible

for self-intersection to occur in the surface upon deformation. We have found this to

be quite rare in practice as most deformations are quite smooth and do not deform

the map in erratic ways. This aspect of the algorithm is one of the trade offs made

in favor of computational performance. Following a brief description of each of the

datasets captured and evaluated in this section is provided (each trajectory length is

listed in Table 7.5);

1. Coffee: A human handheld dataset captured while walking around a single loop

in a small coffee room with typical domestic structures present.

2. Indoors: A human handheld dataset captured while walking around a short

single loop in a long corridor environment with low geometric complexity and

varying degrees of visual texture.

3. Garden: A human handheld dataset captured outdoors at night with an LED

array mounted on the sensor for illumination. The path follows a single loop

with sweeping side to side pans of the camera in a cluttered semi-natural envir-

onment.

4. Outdoors: A human handheld dataset captured outdoors at night with an LED

array mounted on the sensor for illumination. The path follows a very large

single loop with long segments of data with only the ground plane visible (i.e.,

low geometric complexity).

5. Two floors: A human handheld dataset captured indoors over two floors of a

large building closing a single large loop. The path takes the sensor through a

wide variety of scenes including corridors, staircases and office environments.
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6. In/outdoors: A human handheld dataset which spans both indoor and outdoor

environments at night with an LED array mounted on the sensor for illumina-

tion. The path follows a complex trajectory which includes long stretches over

areas of low geometric complexity (only a ground plane visible), transitioning

into an indoor environment including travel up a staircase and down another,

closing a first loop within the indoor environment before transitioning back

outdoors to follow a new path back to the original starting position closing the

second and final loop.

7. Apartment: A human handheld dataset captured indoors over two floors of an

apartment. The path explored is very complex involving five loop closures at

various points in the trajectory as three rooms, the landing and staircase are

traversed. The trajectory is shown in pink in Figure 7.9.

7.1.2.1 Comparison to 2-pass Optimisation

In order to evaluate the accuracy of the deformation process we compare the resulting

maps produced when a 2-pass approach is taken versus a single pass approach with

a deformation for map correction. The 2-pass approach involves the following steps;

1. Build a pose graph with a camera pose for every frame.

2. Detect visual loop closures using the method described in Section 5.2.

3. At the end of the dataset, optimise the camera pose graph taking loop closure

constraints into account.

4. Rerun the dataset using the optimised pose graph in place of the visual odometry

frontend.

From here we can compare the two maps to determine a measure of similarity. This

presents an interesting question as although the pose graphs for both the 2-pass and
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deformation-based maps are identical, the maps themselves may differ slightly due

to the fact the 2-pass approach gives up frame-to-model registration on the second

pass where the frustum-volume intersection may also slightly change. This means

there will not be any reliable 1-to-1 point correspondences between the maps. For

this reason we measure the map similarity by the residual error of a dense ICP-based

registration of the maps. Given that both maps lie in the global coordinate frame we

can iteratively minimise nearest neighbour point-wise correspondences between the

two maps using standard point-to-plane ICP. This allows us to account for a small

rigid transformation error between the two maps. We measure the remaining root-

mean-square residual error between point correspondences as the residual similarity

error between the two maps. Table 7.5 lists statistics on the seven evaluated datasets

including the 2-pass residual registration error as well as the same error computed

on maps deformed with a subsampled pose graph (2-pass fast), which we discuss in

Section 7.1.3. It is clear that the deformation approach brings the map into strong

alignment with the 2-pass output, with only a few millimetres in difference. This

can be seen in Figure 7.3. Images of all datasets are provided in Figures 7.10-7.16.

The Apartment dataset has a notably higher error than the other sequences, owing

to the complexity of the trajectory and scene. However observing the reconstruction

in Figure 7.16 it can be seen that a high quality map is still achieved.

7.1.2.2 Surface Reconstruction Comparison

In Figure 7.4 we present a comparison of the reconstructions produced by each of

the systems evaluated in Section 7.1.1.1 on the fr1/xyz data. From this qualitative

comparison it is evident that our approach benefits greatly from the use of a fused

volumetic frontend, removing substantial noise from the reconstruction and producing

a much cleaner model than other approaches. While the output from RGB-D SLAM,

MRSMap and DVO SLAM can be fed through a signed distance fusion pipeline to
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Figure 7.3: Heatmap showing the difference between the deformed reconstruction and
2-pass reconstruction of the Indoor dataset. Blue indicates no error and scales to pure
green indicating an deviation of 0.08m.
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 7.4: Comparison of reconstructions on the fr1/xyz dataset; (i) Point cloud
reconstruction with our approach showing a smooth surface reconstruction. (ii) Re-
projected keyframe reconstruction from RGB-D SLAM, showing a noisy surface with
quantisation effects. (iii) Reprojected keyframe reconstruction from DVO SLAM
again showing a noisy surface with quantisation effects. (iv) Triangular mesh recon-
struction with our approach. (v) OctoMap [47] reconstruction from RGB-D SLAM,
while in this form useful for motion planning, appears very jagged and is quantised
to the nearest voxel. (vi) Point cloud sampled at highest resolution from surfel map
with MRSMap showing an evident discretisation effect.
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produce a similar output, this would strictly be a post-processing step that is not

required by our own system to produce such reconstructions.

We also compare our reconstruction results on all of our seven evaluated datasets

to the output produced by the open source DVO SLAM system of Kerl et al. [63], using

the provided default configuration parameters. DVO SLAM performance statistics are

listed in Table 7.6. In all datasets the DVO SLAM system frontend executed at 30Hz.

The final pose graph optimisation and additional keyframe loop closure search time

is listed in the “Post-processing” column. The DVO SLAM system uses no specific

method for map reconstruction and must rely on point cloud reprojection of raw RGB-

D keyframes to reconstruct the map after the pose graph has been optimised. This

results in many redundant and repeated points in the map. To remedy this problem

we apply a voxel grid downsampling filter (as mentioned in Section 3.3.2) with a

resolution of 1cm to the output keyframe vertices to keep the map size tractable.

These numbers are listed in the “Vertices” and “Vertices (filtered)” columns. As

listed the system successfully reconstructs the Coffee and Indoors datasets, however in

contrast to our approach post-processing time of between 7 and 31 seconds is required

to optimise the final pose graph and resolve any additional keyframe loop closures

(where our system does not require any post-processing or final batch steps). Failure

to detect loop closures results in failed reconstructions on the Garden, Outdoors, Two

floors, In/outdoors and Apartment datasets which could perhaps be remedied by using

a bag-of-words visual features-based approach similar to ours or indeed, as suggested

by Kerl et al., the FAB-MAP algorithm [13]. Camera pose estimation failures were

also encountered in the Outdoors, Two floors, In/outdoors and Apartment datasets,

particularly in regions of the sequences which were mostly planar or had strong visual

aliasing, such as staircases. From these results and those listed in Table 7.2 we observe

that the method for detecting loop closures used by DVO SLAM is very strong in

small sized environments but scales poorly as the explored area size grows, both
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in terms of accuracy and computational performance (embodied in the consistently

increasing post-processing time).

In Figure 7.5 we qualitatively compare the reconstruction quality of our approach

versus the maps produced by DVO SLAM on the Coffee and Indoors datasets. For

clarity we compare vertices only as DVO SLAM provides no method for mesh surface

reconstruction. These results show that the reconstruction produced by our approach

is much smoother and contains significantly less redundant vertices. Additionally,

there are no raw RGB-D point cloud quantisation effects in our reconstructions. The

reprojection principle taken to producing the map from DVO SLAM keyframes does

result in entire frame back-projection which produces a more “fuller” looking map,

however far away points in current generation RGB-D sensors are known to be ex-

tremely noisy and highly inaccurate [64].

To summarise our surface reconstruction comparison results, it can be observed

that qualitatively the reconstructions produced by the SLAM system presented in

this thesis are smoother and overall less noisy when compared to other approaches.

This is down to the fact that our system actively fuses every depth map captured

within the frontend to remove noise and improve the reconstruction, in contrast to

other SLAM systems which mostly rely on the map for pose estimation alone (in

fact most related work, with the exception of that of Meilland and Comport [81], fo-

cusses very strongly on trajectory estimation and not the actual map reconstruction

quality). Additionally, looking at Table 7.6 it is shown that our approach scales to

significantly larger environments and longer trajectories without sacrificing perform-

ance. To date no other dense RGB-D visual SLAM system has been demonstrated to

function completely in real-time with no batch steps to produce a globally consistent

surface reconstruction over the extended scale trajectories which we have shown.
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(i) (ii)

(iii) (iv)

Figure 7.5: From top to bottom; (i) DVO SLAM keyframe reprojection of the Coffee
dataset. The surfaces are notably noisy and quantisation effects are evident. (ii) Our
reconstruction of the Coffee dataset, showing a smooth uniform reconstruction. (iii)
DVO SLAM keyframe reprojection of the Indoors dataset. Again surfaces are very
noisy and highly quantised. In contrast to our reconstruction, the ceiling has been
mapped in most of the sequence, however being quite distant from the sensor suffers
badly from discretisation effects. (iv) Our reconstruction of the Indoors dataset. The
ceiling has not been reconstructed in this sequence since the configuration of the
TSDF volume size caused it to fall outside of the area of reconstruction. This is
however easily remedied by modifying the relative parameterisation of the volume
with respect to the sensor, similar to the dynamic cube positioning technique we
discussed in Section 3.4.
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Figure 7.6: Mesh reconstruction of the first synthetic dataset. Note that the rough
triangulation of parts of the chairs is due to a poor viewing angle throughout the
sequence.

7.1.2.3 Surface Ground Truth

We evaluate the surface reconstruction quality of our approach quantitatively using

synthetic data produced in an identical manner to the datasets created by Handa

et al. [42]. Each dataset contains 30Hz RGB-D frames from a camera placed in a

synthetic office environment. The camera trajectories were generated from real world

data which was previously ran through our visual odometry frontend. Given that

the datasets were produced using a procedural raytracing process (using POVRay),

there is no actual surface to compare against. However, each RGB-D frame does

have ground truth depth information which we compare against. For each frame in

a dataset we compute a histogram of the per depth pixel L1-norm error between the

ground truth depth map and the predicted surface depth map raycast from the TSDF,

normalising by the number of valid pixels before aligning all histograms into a two

dimensional area plot. We evaluated two synthetic datasets of the same scene with
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different camera motions. The temporal error histograms are shown in Figure 7.7

while frames from each dataset are shown in Figure 7.8. Overall the synthetic sur-

faces are reconstructed very well, however occasional raycasting artifacts (particularly

around the edges of objects and on nearby surfaces) can hinder the reconstruction

quality score, as in the first dataset. These artifacts occur due to the fact that a

fixed step size is used during ray casting and no special method is invoked to render

smooth edges, both for performance reasons. Observing the final reconstruction in

Figure 7.6 it is clear that the slight dip in accuracy did not effect the reconstruction

quality by any significant amount. Typically around 95% of the estimated depth of

the surface is within 5mm of ground truth.

7.1.3 Computational Performance

We evaluate the computational performance of both the frontend and backend of the

system. The evaluation platform was a standard desktop PC running Ubuntu 12.04

with an Intel Core i7-3960X CPU at 3.30GHz, 16GB of RAM and an nVidia GeForce

680GTX GPU with 2GB of memory.

7.1.3.1 Frontend Performance

To evaluate the performance of the frontend (including volume integration, camera

pose estimation, volume raycasting and volume shifting, essentially all teal colored

function blocks in Figure 5.1) we provide frame processing timing results on the

fr1/desk sequence comparing different choices of the ms parameter discussed in Sec-

tion 3.3. This parameter affects the frequency and size of each volume shift, which

in turn affects frontend performance. Results are shown in Table 7.7. A shifting

threshold of 16 voxels was found to be optimal, providing the best computational

performance with an average frame rate comfortably above the frame rate of the

sensor (30Hz) and with minimal spikes in execution time.
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Figure 7.7: Temporal histograms of predicted depth versus ground truth depth on
synthetic datasets. A frame from the dip in accuracy around the center of the first
dataset is shown in Figure 7.8 (i) while a frame from the peak in accuracy in the
center of the second dataset is shown in Figure 7.8 (ii).

ms Avg (ms) Min (ms) Max (ms) StdDev (ms)
1 34.15 25.93 41.58 3.30
2 32.21 25.63 39.29 3.14
4 31.08 25.38 39.02 2.77
8 30.57 25.42 37.44 2.48
16 29.94 24.97 37.25 2.26
32 30.26 25.33 40.30 2.39
64 30.49 25.06 43.95 2.73

Table 7.7: Computational performance of the volumetric fusion thread on the fr1/desk
dataset. The shifting threshold ms is given in voxels while the frame processing
timings are given in milliseconds. Highlighted is the optimal choice based on execution
time.
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(i)

(ii)

Figure 7.8: One frame from each surface ground truth evaluation dataset. Each shows
in clockwise order the ground truth RGB, predicted RGB, predicted surface phong
shaded by voxel weight and ground truth depth map. From top to bottom; (i) Here
raycasting artifacts are visible in the predicted surface in the bottom right causing a
high error in the evaluation; This is evident particularly in the top right-hand corner
of the frame where the wall is visible through the side of the desk. (ii) Overall the
surface is being well estimated and there are no raycasting artifacts.
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7.1.3.2 Backend Performance

We quantify the computational performance of the backend in the context of an online

real-time SLAM system by measuring the latency of the system. That is, how long

is takes for 1) a loop closure to be recognised when one is encountered and 2) map

correction to be completed. Table 7.8 shows execution time and latency statistics

on our test platform for the first six datasets, while Table 7.10 shows performance

statistics on the Apartment dataset. We also experimented with subsampling the pose

graph used in the iSAM-based pose graph optimisation by the same sampling metric

used in Algorithm 5.1. This affects the number of poses used in the final pose graph

optimisation and the number of points available to constrain the map deformation in

Equation 5.7.

Our results (shown in Tables 7.9 and 7.11) show that using a subsampled pose

graph (akin to using only keyframes) instead of an every frame pose graph reduces

execution time (and therefore latency) by up to almost an order of magnitude in some

cases, while only mildly affecting map quality (quantified as “2-pass fast” in Table 7.5).

As expected the appearance-based frontend scales very well over hundreds of metres

while the backend is capable of correcting millions of vertices for global consistency

in only 1-3 seconds. The results presented in Tables 7.10 and 7.11 demonstrate

the capability of our approach to deal with complex trajectories with multiple loop

closures. This is further highlighted by the plot of the camera trajectory on the

Apartment dataset shown in Figure 7.9.

7.2 Map Simplification

In this section we evaluate our work on map simplification with a series of experiments.

Four colored point clouds of real-world environments were used in the experiments,

as shown in Figure 7.22i on page 122. These datasets encompass a wide variation in
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7.2. MAP SIMPLIFICATION

Apartment dataset with full pose graph
Loop number 1 2 3 4 5
DBoW images 119 526 708 982 1428
Poses 367 1638 2163 2824 3937
Nodes 14 61 80 105 165
Vertices 492,960 2,792,446 3,800,812 4,482,186 6,296,542
Process Timings (ms)
Frontend 807 858 1596 703 604
iSAM 29 202 277 230 648
Deformation 51 336 425 425 932
Total latency 887 1396 2298 1358 2184

Table 7.10: Computational performance statistics on the Apartment dataset using an
every frame pose graph. Quantities shown are at the moment of loop closure.

Apartment dataset with subsampled pose graph
Loop number 1 2 3 4 5
DBoW images 119 529 708 982 1430
Poses 123 531 715 988 1433
Nodes 13 59 77 100 157
Vertices 492,718 2,791,445 3,799,464 4,490,170 6,295,379
Process Timings (ms)
Frontend 789 868 1557 789 593
iSAM 19 64 93 88 235
Deformation 31 181 252 285 508
Total latency 839 1113 1902 1162 1336

Table 7.11: Computational performance statistics on the Apartment dataset using a
subsampled pose graph. Quantities shown are at the moment of loop closure.
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7.2. MAP SIMPLIFICATION

Figure 7.9: Camera trajectory plot within the Apartment dataset, showing the “loopy”
path the camera took through the environment.

Figure 7.10: Dataset of a small coffee room. Inset shows everyday objects such as
bins and fridges are captured in high detail and how the deformation approach works
well in smaller environments.
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7.2. MAP SIMPLIFICATION

Figure 7.11: Corridor loop closure dataset. The inset shows map consistency at the
point of loop closure.

Figure 7.12: Large cluttered outdoor dataset. Inset shows chairs and metal bars are
reconstructed well.
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7.2. MAP SIMPLIFICATION

Figure 7.13: Large outdoor dataset. Inset shows brickwork is clearly visible.

Figure 7.14: Dataset composed of two floors. Inset shows everyday objects such as
chairs and computers are captured in high detail.
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7.2. MAP SIMPLIFICATION

Figure 7.15: Large indoor and outdoor dataset made up of over five million vertices.
Insets show the high fidelity of small scale features in the map.

Figure 7.16: Sequence over two floors of an apartment with over six million vertices.
Small details such as bathroom fixtures and objects around the environment are
clearly reconstructed.
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7.2. MAP SIMPLIFICATION

the number of points, planar segments and their geometry. All four datasets have

been acquired with the SLAM system described in the previous chapters. A brief

description of each of the four evaluated datasets follows (all were captured in human

handheld sensor trajectories);

1. A long map spanning a large foyer floor followed by a tall set of stairs.

2. A small cluttered map spanning the area of a studio apartment.

3. A short map spanning a short segment of a corridor environment.

4. A tall map spanning a small seating area followed by a large spiraling staircase

and partial upper level.

7.2.1 Incremental Segmentation Performance

To evaluate the performance of the incremental segmentation process listed in Sec-

tion 6.4 we compare the batch segmentations to the incremental segmentations of the

four datasets both qualitatively and quantitatively. We use the open source software

CloudCompare (http://www.danielgm.net/cc/) to align the batch and incremental

models of each dataset together to compute statistics. We quantify the quality of the

incremental segmentation versus the batch segmentation by using the “cloud/mesh"

distance metric provided by CloudCompare. The process involves densely sampling

the batch planar model mesh to create a point cloud model which the incremental

model is finely aligned to using ICP. Then, for each vertex in the incremental planar

model, the closest triangle in the batch model is located and the perpendicular dis-

tance between the vertex and closest triangle is recorded. Five standard statistics are

computed over the distances for all vertices in the incremental model: Mean, Median,

Standard Deviation, Min and Max. These are listed for all four datasets in Table 7.12.

Figure 7.17 shows heatmap renderings of the “cloud/mesh” error of each incre-

mental segmentation compared to the batch segmentation. Notably in each dataset
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Dataset 1 2 3 4
Mean (m) 0.020 0.038 0.111 0.028
Median (m) 0.015 0.004 0.015 0.010
Std. (m) 0.021 0.108 0.251 0.065
Min (m) 0.000 0.000 0.000 0.000
Max (m) 0.157 0.823 1.389 0.719

Table 7.12: Incremental versus batch planar segmentation statistics. All values shown
are in metres, on the distances between all vertices in the incrementally segmented
model and the nearest triangles in the batch segmented model.

(i) (ii) (iii) (iv)

Figure 7.17: Heatmaps based on the distances between all vertices in the incrementally
segmented model and the nearest triangles in the batch segmented model for all four
datasets. Color coding is relative to the error obtained where blue is zero and tends
towards green and red as the error increases.

there are a number of highlighted green planes, these are planes which were not de-

tected in the incremental segmentation model but exist in the batch segmentation.

In general the incremental segmentation occasionally fails to segment small planar

segments whereas the batch segmentation always finds all planes that match the cri-

terion set out in Algorithm 6.1. Additionally, as the incrementally grown planes use

a moving average for the planar segment normal, some planes may have a slightly

different orientation when compared to the batch model. This is evident in particular

in Figure 7.17 (i) and (iii). Taking this qualitative information into account as well

as the statistics in Table 7.12 we find that the incremental segmentation algorithm

produces segmentations extremely close to what would be achieved using the batch

process and is suitable to use in a real-time system that must generate and use the

planar model online.
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Dataset 1 2 3 4
Total points 890,207 1,094,910 2,799,744 5,641,599
Planar points 540,230 708,653 1,303,012 2,430,743
QTB decimation 105,663 303,348 189,772 457,678
Our decimation 47,457 84,711 43,257 76,624

Table 7.13: Planar point reduction with our decimation algorithm in comparison to
the QTB algorithm.

7.2.2 Triangulation Performance

To assess the triangulation performance, qualitative and quantitative evaluations are

presented. A comparison of the triangulation algorithms is shown in Figure 7.22.

It can be seen that both algorithms produce a highly simplified triangulation, while

preserving the principal geometry of the planar segments. Further assessment of

mesh quality is done by measuring the angle distribution across meshes. A naïve

simplified planar mesh is set as a baseline, which applies Delaunay triangulation to

only the boundary points of a planar segment. The normalised distribution is shown

in Figure 7.18, collected from the 400 planar segments of the four datasets. Taking

this figure into account along with the qualitative results shown in Figures 6.2 (iv) and

6.4 (v) we can infer that approximately 80% of the triangles from the polygon-based

triangulation are isosceles right-angle triangles, resulting from the quadtree-based

triangulation. With point-based triangulation, the angles spread over 30°-90°, whereas

the naïve boundary-based triangulation shows an even more random distribution.

Defining a skinny triangle as one with a minimum angle <15°, the percentages of

skinny triangles with boundary-based, point-based and polygon-based triangulation

are 28%, 10% and 10%, respectively.

The effectiveness of planar segment decimation is also evaluated. Table 7.13 shows

the point count for planar point decimation. Approximately 90% of the redundant

points are removed with our algorithm, which is 15% more than the QTB algorithm,

despite the fact that both algorithms are based on a quadtree. Part of this reduction
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7.2. MAP SIMPLIFICATION

Figure 7.18: Triangulation quality measured with a normalised histogram of the angle
distribution of planar meshes.

Dataset 1 2 3 4
GPT 1,020,241 1,350,004 2,293,599 4,665,067
QTB 90,087 288,833 182,648 433,953
Point-based 85,653 161,270 79,988 143,396
Polygon-based 76,367 130,642 66,413 118,275

Table 7.14: Planar mesh simplification with our triangulation algorithms measured
with triangle counts, in comparison to GPT and the QTB algorithm.

gain comes from our triangulation methods, which add no extra points once decima-

tion is completed, unlike the QTB algorithm. In Table 7.14, the mesh simplification

statistics with triangle counts are also given. We take the triangle count of GPT for

non-decimated planar segments as the baseline. In accordance with the point count

reduction, both of our algorithms require no more than 10% of the amount of triangles

of a non-decimated triangulation, and both perform better than the QTB algorithm.

In terms of texture generation performance, Figures 6.6 and 7.22iv show qualitative

results. The output textures incorporate almost all visual information contained in

the original dense point cloud, enabling a photo realistic and aesthetically-pleasing

textured 3D model.
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7.2. MAP SIMPLIFICATION

Figure 7.19: Graph comparing cumulative log file time (real world time) versus the
time the incremental segmentation method spends processing data on dataset 2. Also
shown is the size of the unsegmented point pool over time (linearly scaled).

7.2.3 Computational Performance

We evaluate the computational efficiency of the described algorithms. We firstly

evaluate the incremental method for planar segmentation followed by the parallel

system used for large-scale batch data processing.

7.2.3.1 Incremental Performance

In contrast to the results presented in Section 7.2.3.2 which include the full pipeline

from batch planar segmentation to triangulation, we only evaluate the performance of

the incremental planar segmentation algorithm listed in Section 6.4 here. We analyse

the online performance of the algorithm as a component of the dense mapping system

described in Chapter 5. In this setting, small point cloud slices of the environment

being mapping are provided to the incremental segmentation method gradually over

time as the camera moves through the area. Figure 7.19 shows a plot of the cumulative
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Figure 7.20: Heatmap rendering showing the relationship between the number of
unsegmented points, the number of non-finalised planes and the execution time of
the incremental segmentation method. The white dots represent the samples used to
generate the map (using linear interpolation).

log file time (real world time) versus the time spent incrementally growing planes with

the process described in Section 6.4. It can be seen that throughout the mapping

process the incremental segmentation method is processing the data it is provided

with faster than it is being produced, meaning that real-time online operation is being

achieved. Also shown is a linearly scaled line representing the size of the unsegmented

point pool over time. The relationship between this line and the segmentation time

is immediately evident in how the cumulative processing time of the segmentation

method increases when the number of unsegmented points increases. Similarly, the

total processing time ceases to increase as the number of unsegmented points tends

to zero.

In Figure 7.20 the relationship between the number of non-finalised planes, the

number of unsegmented points and the execution time of the segmentation method

is visualised. It can be seen that as the number of unsegmented points becomes large
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the execution time increases quite a lot. However for a fixed number of unsegmen-

ted points, in particular above 6 × 104, an increased number of non-finalised planes

improves performance. This suggests that growing and merging existing planes is

computationally cheaper than adding an entirely new plane. The peak around 4×104

unsegmented points came from an early on influx of many new points to the map.

Along with the observation of apparent plateauing of cumulative processing timing

in Figure 7.19 we can conclude that the number of unsegmented points introduced

to the segmentation method at any one time influences computational performance

the most. If too many are introduced, for example if the density of the input point

cloud is too high or the mapping system is producing data too quickly, real-time per-

formance may be hindered. However this can easily by remedied by downsampling

the data provided to the segmentation algorithm.

7.2.3.2 Batch Performance

With batch processing the baseline for performance comparison is standard serial

processing with the GPT and QTB algorithms. Table 7.15 shows the execution

times. The point-based and polygon-based triangulations are approximately of the

same speed, both 2 to 3 times faster than the GPT and QTB algorithms. The

results also show that the texture generation algorithm is fast in execution, processing

multi-million point datasets in less than 2 seconds. Examining the bottom half of

Table 7.15, it is clear that the parallel system architecture has a profound effect on

the overall performance. The execution time decreases with an increasing number

of triangulation threads. An effect of diminishing returns becomes apparent as the

number of triangulation threads increases, due to the overhead associated with the

parallel implementation. However, as the per-thread workload increases, such as the

inclusion of texture generation, the overhead of parallelisation becomes amortised.

Both point-based and polygon-based triangulation yield accurate and computa-
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Dataset 1 2 3 4
Number of planar segments 101 116 66 117
Serial GPT (s) 18.6 24.3 44.2 91.1
Serial QTB (s) 16.7 18.7 38.3 73.1
Serial point-based (s) 6.9 9.8 17.7 40.2
Serial polygon-based (s) 6.9 9.5 17.8 40.0
Serial polygon-based (texture) (s) 8.3 10.0 20.3 41.4
1:1 Polygon-based (s) 6.4 8.1 15.1 33.8
1:1 Polygon-based (texture) (s) 7.6 8.5 17.4 35.2
1:3 Polygon-based (s) 3.6 4.2 8.3 19.2
1:3 Polygon-based (texture) (s) 4.4 4.1 9.2 19.6
1:5 Polygon-based (s) 3.7 3.5 7.9 16.1
1:5 Polygon-based (texture) (s) 4.7 3.5 8.7 16.2

Table 7.15: Efficiency of triangulation and the parallel architecture, measured in
seconds. The 1:x ratio denotes 1 segmentation thread with x triangulation threads.

tionally efficient planar segment triangulations with significant point and triangle

count reductions, both exceeding the performance of the QTB algorithm. The point-

based approach is of low complexity and maintains good triangular mesh properties

that are desirable for lighting and computer graphics operations. The polygon-based

approach yields higher point and triangle count reductions with a more regularised

mesh pattern, capturing information about the scene in the form of principal geo-

metric features, such as the principal orientation of a planar segment. While the

polygon-based method produces less triangles, it does generate T-joints in the mesh.

Such features are detrimental when employing Gouraud shading and other lighting

techniques to render a mesh with colored vertices. The polygon-based and point-based

methods offer a trade-off depending on the desired number of triangles or the intended

use of the final triangulation. With robot navigation in mind, the low polygon-count

models achieved with our system are suitable for use in a primitives-based localisation

system, such as the KMCL system of Fallon et al. [29].

As can be seen in the left images of Figure 7.21, the gaps between planar and non-

planar triangulations are apparent. The gap can be closed by including the boundary

vertices of the segmented planes in the non-planar segment GPT triangulation, as
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Figure 7.21: Joining of GPT mesh with planar segment triangulations. Left shows
unjoined segments and right shows segments joined with interpolated boundary ver-
tices.

shown in Figure 7.21. The number of boundary vertices can be increased with a

smaller alpha value when computing the concave hull of each segment or by linearly

interpolating between boundary vertices. Extra vertices can also be extracted from

the vertex degree grid used in polygon-based triangulation. In our system we chose to

leave these gaps open, as this separation gives an easier visual understanding of any

map, implicitly providing a separation between structural features (like walls, table

tops) and “object” features, useful in automatic scene understanding, manipulation

and surface classification.

7.3 Multimedia

The interpretation of the experimental results presented in this thesis is greatly en-

hanced by a set of videos which more clearly highlight the scale and quality of the

presented systems. These videos and their respective URLs are described as follows:

Extended Scale Volumetric Fusion (http://youtu.be/ggvGX4fwT5g)
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(i) Four dense colored point cloud datasets used for evaluation, numbered 1, 2, 3
and 4 from left to right.

(ii) Point-based triangulation, with planar and non-planar meshes highlighted in
blue and orange, respectively.

(iii) Polygon-based triangulation with planar and non-planar meshes highlighted in
blue and orange, respectively.

(iv) Textured simplified planar segments from each dataset.

(v) Complete 3D model with our proposed system.

Figure 7.22: Four evaluated datasets (numbered from 1 to 4 from left to right) with
various triangulation and texturing results.
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This video demonstrates the volume shifting capabilities of the system described in

Chapter 3. The basic functionality of the system is shown followed by a number of

sample datasets.

Robust RGB-D Visual Odometry (http://youtu.be/MEugh12dcYA)

This video demonstrates the color fusion technique described in Chapter 3 and the

method for robust real-time RGB-D visual odometry described in Chapter 4. Com-

parisons are drawn between the different techniques.

Deformation-based Loop Closure (http://youtu.be/MNw-GeHHSuA)

This video shows our method for dense large scale loop closure described in Chapter

5. Interpolated map deformation is shown followed by a number of example datasets.

Real-time Multiple Loops (http://youtu.be/D3yYjaLmiqU)

This video demonstrates the real-time multiple loop closing capabilities of our SLAM

system described in Chapter 5. This video was recorded during the real-time play-

back of a large in and outdoor dataset.

Planar Simplification (http://youtu.be/uF-I-xF3Rk0)

This video shows our techniques for real-time incremental planar simplification and

batch planar triangulation described in Chapter 6. Real-time incremental planar seg-

mentation is shown followed by model comparisons of various datasets.

Closed-Loop Robotics (http://youtu.be/XqDUniEY954)

This video shows our fully autonomous closed-loop robotics experiment which we

describe in Chapter 8. The handheld video stream was recorded in a single take,

highlighting the strong real-time aspect of the system.
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CHAPTER 8

Applications

In this chapter we present two case studies where the techniques described in this

thesis have been applied. The first of these is work on point cloud segmentation by

Finman et al. [30, 31] and the second a real-time real-world experiment involving a

fully closed-loop autonomous robotic platform [128].

8.1 Segmentation

Finman et al. have published a number of papers in recent years directly using

the output of the SLAM system we have presented in this thesis. The work they

presented greatly benefits from the high quality reconstruction obtained with our

system, in contrast to the low quality point clouds which are often captured in raw

RGB-D frames. The following two subsections each give an overview of a recent

publication by Finman et al. and how the system we developed has been useful in

their own research. This is not a contribution of this thesis but included here as an
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example of the utility and efficacy of the techniques described in this thesis.

8.1.1 Object Segmentation From Change Detection

In this paper, Finman et al. present a system for automatically learning segmenta-

tions of objects given changes in dense RGB-D maps over the lifetime of a robot [30].

Using the SLAM system described in this thesis to capture multiple dense maps, they

detect changes between mapped regions from multiple traverses by performing a 3D

difference of the scenes. Their method takes advantage of the free space seen in each

map to account for variability in how the maps were created. The resulting changes

from the 3D difference are considered the discovered objects, which are then used to

train multiple segmentation algorithms in the original map. The final objects can then

be matched in other maps given their corresponding features and learned segment-

ation method. If the same object is discovered multiple times in different contexts,

the features and segmentation method are refined, incorporating all instances to bet-

ter learn objects over time. This work benefits greatly from the uniformly smooth

reconstructions produced by our system. A figure from the original publication [30]

is shown in Figure 8.1, where overlapping maps are aligned to detect any changes.

8.1.2 Efficient Incremental Map Segmentation

In this paper, Finman et al. present a method for incrementally segmenting large

RGB-D maps as they are being created [31]. They propose that segmentation of

large scale dense maps is a first step for higher-level tasks such as object detection.

Current popular methods of segmentation scale linearly with the size of the map and

generally include all points. This method takes a previously segmented map and seg-

ments new data added to that map incrementally online. Segments in the existing

map are re-segmented with the new data based on an iterative voting method. Their

segmentation method works in maps with loops to combine partial segmentations
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Figure 8.1: Top and center: First two maps for alignment. Note the overlapping
regions within the red circles. Bottom: Both aligned maps drawn together with the
filtered difference, a suitcase, highlight in red.
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Figure 8.2: Left: RGB-D map being built with new data (left) being added to the
full map (right). Center: The new data segmented individually with each segment
randomly colored. Right: The newly segmented map with the new data combined
incrementally. Note: the left and center pictures have the new data spaced apart for
viewing purposes only.

from each traversal into a complete segmentation model. They verify their algorithm

on multiple real-world datasets spanning many metres and millions of points in real-

time, while also comparing their technique with a popular batch segmentation method

for accuracy and timing complexity. This work directly exploits the incremental ar-

chitecture of our SLAM system in how it incrementally segments individual cloud

slices (as described in Chapter 3) which are then combined into the overall segment-

ation. A figure from the original publication [31] is shown in Figure 8.2, where the

cloud slice delineation of an incrementally produced map is shown, along with the

individual and joint segmentations.

8.2 Closed-Loop Autonomous Robotic System

In this second case study we present an experiment that marries the work of this

thesis with related recent work on robotic perception to form a system capable of

completing a simple real-world task in an entirely autonomous fashion. This experi-

ment is perhaps the most practical contribution of this thesis focussing on a complete

working autonomous robotic system which has a tangible effect in the real world.

This work is related to a number of other recent efforts that seek to develop and

exploit an object-based and/or semantic understanding of a mobile robot’s environ-
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ment. Aydemir et al. [4] investigate techniques for active visual search for objects

in a robot’s environment, exploiting spatial relationships between objects to develop

efficient search strategies. Their paper suggests the use of “dense 3D point cloud

representation[s] of scenes to guide the search”, which is something that is enabled

in our work via the framework outlined in Chapters 3 through 5. Other related re-

cent work includes the work of Salas-Moreno et al. [99], which develops SLAM++

(an object-oriented approach to SLAM), and Herbst et al. [46], which performs auto-

matic discovery of objects via multiple views of a scene. Also related is a large body

of recent work by Saxena et al. [100] which develops techniques for a PR2 robot to

detect, classify and grasp objects in a variety of different contexts.

The task we set out to complete is autonomously determining the location of a

preselected object in the physical world. This experiment requires a robotic frame-

work with a number of capabilities including autonomous exploration, dense real-time

localisation and mapping, object detection, path planning and motion control. Fig-

ure 8.4 shows the two main steps involved in the process, with reference to a detailed

explanation of each core component provided in Section 8.2.1.

The physical embodiment of this experiment requires a mobile robotic platform,

a laptop (to interface onboard the robot) and a workstation computer. The robot

in our experiment is the Clearpath Robotics Turtlebot 2 platform, shown in Figure

8.3. The laptop onboard the turtlebot is equipped with an Intel Core i7-3630QM

CPU, 24GB of RAM and an nVidia GeForce 675M GPU with 2GB of memory. The

workstation computer is the same as described in Section 7.1.3.

8.2.1 Components

This section describes in detail the steps taken by each of the components labelled

alphabetically in Figure 8.4, including the specific instances in the actual experiment

carried out.
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Figure 8.3: Photograph of the Turtlebot 2 platform used in our experiment. It is a
2-wheeled platform with an RGB-D sensor, controlled by an onboard computer (a
standard laptop in this scenario).
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(i)

(ii)

Figure 8.4: This figure shows the two main steps involved in executing the required
task. The top subfigure (i) illustrates the first step in the process. The robot is set to
explore the environment while streaming the RGB-D data captured with the onboard
sensor back to the workstation over 802.11n WiFi. The workstation uses this data
to reconstruction a globally consistent map of the explored environment in real-time,
signaling the robot to cease exploration when a loop has occurred. In the second
step, shown in subfigure (ii), the workstation simplifies the dense map such that it is
suitable for real-time localisation and detects the position of the desired object in the
dense map. This information is sent to the robot which then navigates to the detected
object using onboard real-time path planning and control against the simplified map.
Details for each of the individual components are provided in Section 8.2.1.
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Figure 8.5: Dense reconstruction of the area autonomously explored by the robot.

(a) Dense SLAM - In order to reconstruct the environment explored by the robot in

real-time, the SLAM approach outlined in Chapters 3 through 5 is employed on

the workstation computer. While the robot explores the real world, the RGB-D

data captured by the onboard sensor is streamed in real-time over 802.11n wifi

to the workstation machine. Once a loop closure is detected in the explored

area, the robot is signalled to stop exploring. Figure 8.5 shows the resulting

reconstruction of the explored area.

(b) Avoidance-based Exploration - A simple approach to exploration is adopted

in this experiment. Planning is carried out in real-time on the robot using

the immediate RGB-D data captured with the onboard sensor. The approach

attempts to maintain a constant distance to any surfaces to the left of the robot

not lying on the ground plane. This is accomplished by analysing a single line

of the depth map at the height of the sensor off of the ground plane. The

bearing and forward velocity of the robot is recalculated every frame (i.e. at

131



8.2. CLOSED-LOOP AUTONOMOUS ROBOTIC SYSTEM

Figure 8.6: Planar simplification of the area autonomously explored by the robot with
triangulation overlaid.

30Hz) based on the relative distance to any surfaces detected in the depth map

which the robot may collide with. While simple in practice, this method for

exploration works well in most environments and is suitable for use as a simple

proof-of-concept example. A more sophisticated coverage-based approach could

be adopted to improve performance in more complicated environments.

(c) Planar Simplification - As we discuss in Step (f), a simplified planar map of the

environment is required for the approach we employ for real-time localisation.

For this we apply the planar simplification technique described in Chapter 6

to the dense reconstruction obtained from Step (a). This model is quick to

compute and also provides a format in which it is trivial to perform floor plane

detection and alignment for 2D path planning (by taking the plane with the

largest area with the correct relative transformation to the capturing sensor).

Figure 8.6 shows the simplified planar model computed from the dense map.

This compact scene model is transferred to the robot wirelessly for autonomous

navigation and localisation in the subsequent steps.

(d) Object Detection - In order to query the robot to navigate to a point of in-

132



8.2. CLOSED-LOOP AUTONOMOUS ROBOTIC SYSTEM

(i) (ii)

Figure 8.7: From left to right; (i) Learned model of a trash can from a previous scan,
with triangulation shown; (ii) Detected position of the object within the mapped
environment highlighted in red.

terest, we choose to learn a number of object models as a precursor step to the

experiment. From this point, provided steps (a) through (c) have succeeded,

we can query the system with a known object model. If the system can locate

the object within the dense map provided by Step (a), a path can be planned

from the last known location of the robot through the environment using the

simplified model provided by Step (c). To learn the segmentation paramet-

ers for different object models, we use the approach presented by Finman et

al. [30]. Figure 8.7 shows a sample object model learned by the system, and the

highlighted detection of the object within the dense map provided by Step (a).

(e) Path Planning - The simplified planar model provided by Step (c) includes de-

tection of and alignment with the floor plane. By projecting the remainder of

the model onto the floor plane a simple occupancy grid map of the environment

can be recovered. From here, the configuration space of the robot can be com-

puted and 2D path planning within the occupancy grid can easily be carried

out. In our implementation we seed the path planner with the last known loca-

tion of the robot and the location of the detected object and run the A* search

algorithm to find a path through the occupancy grid. From here we simplify
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Figure 8.8: This figure shows the path planned from the last known location of the
robot (top right) to the location of the detected object in the environment. White
space is not considered, while grey space is unoccupied but outside of the configuration
space of the robot. The path is shown in green while the control waypoints are shown
in blue.

the A* path using a greedy ray-tracing method to compute a set of sparse way-

points within the environment. Figure 8.8 shows the path planned through the

environment in our experiment.

(f) Onboard Localisation and Control - Given a simplified model of the environ-

ment to localise against and a target location to reach in the map, the robot

must autonomously navigate to each point in the planned path in a closed-loop

fashion. For this we use the Kinect Monte Carlo Localisation (KMCL) system

of Fallon et al. [29]. The KMCL system is a particle filter-based localisation

system that uses predicted RGB-D frames from within a planar model of an en-

vironment as the basis for a likelihood function in comparison to actual RGB-D
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Figure 8.9: This figure shows the KMCL system in action as the robot navigates to
a target waypoint in the environment in real-time. Shown is the simplified planar
model, as well as a number of particle filter estimates of the robot’s current position.

sensor readings. Figure 8.9 shows a screenshot of the KMCL system in ac-

tion during our experiment. The estimated position of the robot is updated at

camera frame rate while a simple proportional controller firstly aligns the ori-

entation of the robot with the location of the next waypoint, before adjusting

the forward velocity of the robot to reach the waypoint. Once the robot has

reached the position of the desired object in the environment, motion is ceased.

8.2.2 Result

The purpose of this case study was to merge a number of recent advances in RGB-

D based perception research to accomplish a simple real-world task using low-cost

commodity components. In this sense, the experiment was a success demonstrating
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clear fitness for purpose. This experiment also highlights the importance of each

component of the system and how each is necessary in completing the task. Namely,

real-time dense mapping is required to inform the robot that it no longer needs to

explore and can immediately access a globally consistent model which can be used for

subsequent object detection and future motion planning. The density of the initial

map is necessary for performing the detection of a variety of objects commonly found

in real-world environments. In contrast to this, quick access to a simplified planar

representation of the environment is needed to perform real-time onboard localisation

in the mapped area for path planning and motion control.

One observation made during the execution of this experiment was both the com-

pounding of failure rates, and the potential for a cascading effect due to a non-terminal

error in the upstream processing resulting in a failure in the downstream processing.

As a consequence, in any given mission a number of consecutive runs could be re-

quired for the robot to complete the task due to the individual rates of failure of each

component of the system compounding together. Examples of the individual failures

included frame-drops in the wireless streaming of the raw RGB-D image sequence to

the SLAM server, failure of the planar segmentation algorithm to robustly estimate

the ground plane (e.g. due to the errors in the reconstruction process), and failure of

the object segmentation and hence recognition due to spurious geometry introduced

from noise in the reconstruction process. Of the above, we found that the principal

source of error in the system was the unreliable nature of the wireless streaming. This

would result in dropped frames which in turn would result in a degradation in camera

tracking and 3D scene estimation.

This is one of the key observations of the experiment which highlights the fact

that the development of techniques which although alone are quite robust and reliable

is not necessarily enough when it comes to combining these techniques together into

a complete framework when attempting to accomplish a larger, higher level task.
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CHAPTER 9

Conclusions

9.1 Thesis Contributions

This thesis has presented a real-time large scale dense visual SLAM system based

on RGB-D data capable of producing high quality globally consistent reconstructions

which are useful for a number of autonomous operations. The principal contribution

of this thesis is the development of a number of methods specifically aimed towards

the large scale aspect of dense reconstruction, extending the state of the art beyond

small scale environments [86]. In particular this is the first example of an RGB-D

based visual SLAM system employing volumetric fusion which (i) can function over

extended scale environments, (ii) uses both geometric-based frame-to-model tracking

and photometric-based frame-to-frame tracking for camera pose estimation, (iii) is

capable of closing large loops in order to update the dense surface reconstruction

online in real-time for global consistency, and (iv) provides an alternative lightweight

but higher level scene representation more useful for planning and autonomous nav-
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igation.

We have provided an extensive evaluation, both quantitatively and qualitatively

on common benchmarks and our own datasets demonstrating the system’s ability

to produce large scale dense globally consistent maps in real-time. These datasets

include more traditional forward-facing robot SLAM style datasets and more com-

plicated handheld human-operated camera trajectories. We have also presented an

example of a practical robotics application, involving the marriage of the contribu-

tions of this thesis with other recent robotics perception work to demonstrate the

immediate usefulness of these techniques and indeed of dense methods as a whole.

Taking real-time dense methods into large scale applications is arguably most chal-

lenging in terms of computational efficiency, due to the enormous amounts of data

which must be processed in a timely manner. Existing techniques for dense meth-

ods were typically bounded in scale of execution which required the development of

new techniques which “unlocked” the applicability of these methods to larger scales.

Within this thesis this includes the development of the efficient cyclical buffer ap-

proach to extended scale volumetric fusion, and the implementation of photometric

camera pose estimation as a highly parallel GPU-based operation.

Related to this is the novel application of space deformation to extended scale

RGB-D based maps. Although used for years in the field of computer graphics, such

complicated non-rigid geometric operations were not found to be necessary in the

context of RGB-D based visual SLAM until the advent of higher quality fusion-based

reconstructions. 3D mapping and reconstruction can be viewed as the inverse of

rendering in computer graphics, and hence a problem can be formulated as the ap-

plication of techniques originally intended for computer graphics to 3D mapping and

reconstruction. One of the key challenges in this thesis was formulating these tech-

niques in a framework more suited to real-time incremental operation as is commonly

found in the visual SLAM world.
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Given this new source of high quality fused map data, in contrast to maps made

up of raw RGB-D data, related techniques such as object segmentation and scene

understanding can benefit greatly. In this thesis in particular, the uniformity of

volumetric fusion-based data is found to be beneficial for planar segmentation and

simplification, both in geometric qualities and appearance (texturing) qualities. Pro-

visioning of less noisy data up front relaxes the need for algorithms further down any

processing pipeline to be highly robust or overly complicated. This in turns helps in

achieving the overarching aim of this thesis to take real-time dense methods to large

scale environments and exploit them for real-world robotics applications.

9.2 Future Directions

There are a large number of future directions for the work in this thesis looking at

both solving current limitations of the selected approaches and applying the system

as it is at present to existing problems. Perhaps the most significant issue with the

current approach to extending volumetric fusion to larger scales is the lack of support

for reintegrating areas of the map which are revisited into the fusion frontend. This

results in aliasing in areas that receive multiple passes. However representing the

surface as a set of cloud slices maintains spatiotemporal information about the map

which can be used for change detection, scene differencing or even the merging of

cloud slices from multiple passes. Reintegration or re-fusing of the mesh-based map

in real-time is a challenging problem due to the sheer volume of data. Some existing

approaches discussed in Section 2.4 support this but lack a means for correcting for

drift or global consistency online in real-time. Commonly adopted space efficient

data structures need to be fully restructured upon large updates to the map, which

in turn would hinder real-time performance greatly. Other discussed approaches

are either offline methods, or sacrifice local surface connectivity to achieve surface
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refusing. Real-time large scale dense fused 3D reconstruction which supports online

drift correction, provides a globally consistent representation of the map at any time

and allows map re-use and re-fusing is a challenging problem which we aim to address

in our future work.

Related to this is the reliance on appearance-based techniques for loop closure

detection, such as DBoW and FABMAP [13, 36]. There are known issues with these

techniques in terms of requiring very similar views of a previously visited scene in

order to detect a loop closure. Adopting an approach which directly localises (and

re-localises) the sensor against the existing large scale map continuously in not only

an appearance-based sense but also a geometry-based sense is a viable avenue for

future research that would improve place recognition rates and overall reconstruction

quality. This tighter approach to place recognition would also make the task of

capturing complete watertight models of scenes easier, something which has proven

difficult in the RGB-D SLAM community without resorting to approaches which “fill-

in” areas of the scene which were not observed [121].

Along the line of more intelligent place recognition is the preliminary work of

Finman et al. on segment-based place recognition [32]. Higher level semantics and

3D scene understanding is one of the central motivations for dense methods. As

the amount of data available to reason about increases, the amount of information

which can be extracted from the scene also increases. Semantic object-based SLAM is

being explored more and more in the field [99, 105, 33], and relies on rich high quality

data to succeed. Scalability of dense methods beyond single buildings and associated

techniques for performing semantic analysis of these huge amounts of data is an

interesting research question which is becoming more important as these techniques

become closer to an everyday usage scenario, in the form of consumer technology.

With the advent of the Google Project Tango1 platform there is an increasing
1https://www.google.com/atap/projecttango
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interest in taking visual SLAM to commodity mobile platforms [102, 66]. Many

current fully dense real-time visual SLAM systems require a high powered GPU device

to perform the processing of the enormous amounts of data encountered each frame,

or at least a high specification CPU [110]. The application and adaptation of some

of the techniques described in this thesis to mobile devices is today a very relevant

direction for future work. Many other devices beyond handheld capture and simple

wheeled robots could also benefit from dense reconstructions over large scales, in

particular quadrotors where it is advantageous to have a rich geometrical environment

representation when planning agile flight motions [2].

This ties into the concept of multi-platform collaborative mapping and multi-

session visual SLAM. Given a wide range of different platforms with different sensing

and processing capabilities, an interesting direction for future work involves bringing

together these platforms into a unified framework capable of performing large scale

dense and semi-dense reconstruction in real-time in a collaborative fashion. Here the

concept of anchor nodes could be employed to connect otherwise disjoint camera pose

graphs into a single global pose graph [80]. From here, the deformation-based loop

closure technique described in this thesis could be directly applied to not only dense

RGB-D fusion-based data but also other sources of 3D data such as stereo vision

and lidar. This would enable a widely applicable mapping system which could for

instance rely on RGB-D data while indoors and then stereo vision when outdoors in

direct sunlight, all under a single framework.

In summary, dense methods present a platform for more advanced autonomous

reasoning and robotic perception. There is a strong necessity for these methods

to function in real-time, and also scale gracefully in operation beyond the lab to

more general environments without sacrificing performance. We are at an age where

high performance computing is ubiquitous and the sensing capabilities of low-cost

commodity devices are more advanced than ever. The techniques outlined in this
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thesis have proven themselves to bridge the gap between the sensing platform and

the advanced hardware. The result is a system which can provide rich informative

dense data that is required for high level autonomous reasoning. The hope is that

the work in this thesis will prove a strong basis for future research both in terms of

real-time large scale dense visual SLAM and as a platform for providing dense data

for secondary research down the robotic perception pipeline.
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