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Abstract—We present a novel approach to real-time dense
visual SLAM. Our system is capable of capturing comprehensive
dense globally consistent surfel-based maps of room scale envi-
ronments explored using an RGB-D camera in an incremental
online fashion, without pose graph optimisation or any post-
processing steps. This is accomplished by using dense frame-to4.
model camera tracking and windowed surfel-based fusion cou- &
pled with frequent model re nement through non-rigid surface 3
deformations. Our approach applies local model-to-model surface B
loop closure optimisations as often as possible to stay close to the i,
mode of the map distribution, while utilising global loop closure
to recover from arbitrary drift and maintain global consistency.

. INTRODUCTION . . -
Fig. 1: Comprehensive scan of an of ce containing over 4.5

In dense 3D SLAM, a space is mapped by fusing the damillion surfels captured in real-time.
from a moving sensor into a representation of the continuous
surfaces it contains, permitting accurate viewpoint-invariant
localisation as well as offering the potential for detailetiave relied on alternation and effectively per-surface-element-
semantic scene understanding. However, existing dense SLAMependent Itering[[15,19]. However, it has been observed in
methods suitable for incremental, real-time operation strugghee eld of dense visual SLAM that the enormous weight of
when the sensor makes movements which are both of extendeth serves to overpower the approximations to joint ltering
duration and often criss-cross loop back on themselves. Swehich this assumes. This also raises the question as to whether
a trajectory is typical if a non-expert person with a handheltlis optimal to attach a dense frontend to a sparse pose graph
depth camera were to scan in a room with a loopy “paintingitructure like its feature-based visual SLAM counterpart. Pose
motion; or would also be characteristic of a robot aiming tgraph SLAM systems primarily focus on optimising the cam-
explore and densely map an unknown environment. era trajectory, whereas our approach (utilising a deformation

SLAM algorithms have too often targeted one of two exgraph) instead focuses on optimising the map.
tremes; (i) either extremely loopy motion in a very small area Some examples of recent real-time dense visual SLAM
(e.g.MonoSLAM [4] or KinectFusion[[15]) or (ii) “corridor- systems that utilise pose graphs include that of Whealan
like” motion on much larger scales but with fewer loogl. which parameterises a non-rigid surface deformation with
closures €.g. McDonaldet al. [13] or Whelanet al. [25]). In  an optimised pose graph to perform occasional loop closures
sparse feature-based SLAM, it is well understood that loojfry corridor-like trajectories[[25]. This approach is known to
local motion can be dealt with either via joint probabilisticscale well but perform poorly given locally loopy trajectories
Itering [3], or in-the-loop joint optimisation of poses andwhile being unable to re-use revisited areas of the map. The
features Bundle adjustmet[11]; and that large scale loopDVO SLAM system of Kerlet al. applies keyframe-based
closures can be dealt with via partitioning of the map intpose graph optimisation principles to a dense tracking frontend
local maps or keyframes and applying pose graph optimisatibat performs no explicit map reconstruction and functions off
[12]. In fact, even in sparse feature-based SLAM there hawé raw keyframes alone [10]. Meilland and Comport's work
been relatively few attempts to deal with motion which is botbn uni ed keyframes utilises fused predicted 2.5D keyframes
extended and extremely loopy, such as Strastiatl's work of mapped environments while employing pose graph opti-
on double window optimisation_[20]. misation to close large loops and align keyframes, although

With a dense vision frontend, the number of points matchewt creating an explicit continuous 3D surfacel[14]. MRSMap
and measured at each sensor frame is much higher thinStickler and Behnke registers octree encoded surfel maps
in feature-based systems (typically hundreds of thousands)gether for pose estimation. After pose graph optimisation the
This makes joint ltering or bundle adjustment local opti-nal map is created by merging key surfel views [21].
misation computationally infeasible. Instead, dense frontendsn our system we wish to move away from the focus on



(i) - (if) (i)

(vi) (vil) __ (viii)

Fig. 2: Example SLAM sequence with active model coloured by surface normal overlaid on the inactive model in greyscale; (i)
Initially all data is in the active model as the camera moves left; (ii) As time goes on, the area of map not seen recently is set
to inactive. Note the highlighted area,; (iii) The camera revisits the inactive area of the map, closing a local loop and registering
the surface together. The previously highlighted inactive region then becomes active; (iv) Camera exploration continues to the
right and more loops are closed; (v) Continued exploration to new areas; (vi) The camera revisits an inactive area but has
drifted too far for a local loop closure; (vii) Here the misalignment is apparent, with red arrows visualising equivalent points
from active to inactive; (viii) A global loop closure is triggered which aligns the active and inactive model; (ix) Exploration

to the right continues as more local loop closures are made and inactive areas reactivated; (x) Final full map coloured with
surface normals showing underlying deformation graph and sampled camera poses in global loop closure database.

pose graphs originally grounded in sparse methods and mdased place recognition method to resolve global surface loop
towards a more map-centric approach that more elegantlpsures and hence capture globally consistent dense surfel-
ts the model-predictive characteristics of a typical denskased maps without a pose graph.

frontend. For this reason we also put a strong emphasis on Il APPROACHOVERVIEW
hard real-time operation in order to always be able to use sur- '

face prediction every frame for true incremental simultaneousWe adopt an architecture which is typically found in real-
localisation and dense mapping. This is in contrast to othéhe dense visual SLAM systems that alternates between
dense reconstruction systems which don't strictly perfooth  tracking and mappind [15. 25! 9| 8, 12.116]. Like many dense
tracking and mapping in real-timg [18,]19]. The approach weLAM systems ours makes signicant use of GPU pro-
have developed in this paper is closer to the of ine dense scegi@mming. We mainly use CUDA to implement our tracking
reconstruction system of Zhaet al. than a traditional SLAM reduction process and the OpenGL Shading Language for view
system in how it places much more emphasis on the accurdégdiction and map management. Our approach is grounded in

of the reconstructed map over the estimated trajecfory [27]estimating a dense 3D map of an environment explored with
a standard RGB-D camﬁén real-time. In the following, we

In our map-centric approach to dense SLAM we attempt summarise the key elements of our method.
apply surface loop closure optimisations early and often, andy) Estimate a fused surfel-based model of the environment.
therefore always stay near to the mode of the map distribution.  This component of our method is inspired by the surfel-
This allows us to employ a non-rigid space deformation of the  pased fusion system of Kellest al. [9], with some
map using a sparse deformation graph embedded in the surface notable differences outlined in Sectibnl Ill.

itself rather than a probabilistic pose graph which is rigidly 2) while tracking and fusing data in the area of the
transforming independent keyframes. As we show in our = model most recently observeddtivearea of the model),

SLAM achieves state-of-the-art performance with trajectory  opserved in a period of timg into theinactivearea of

estimation results on par with or better than existing dense  the model (not used for tracking or data fusion).

SLAM systems that utilise pose graph optimisation. We also 3) Every frame, attempt to register the portion of the active
demonstrate the capability to capture comprehensive dense  model within the current estimated camera frame with

scans of room scale environments involving complex 100py  the portion of the inactive model underlaid within the
camera trajectories as well as more traditional “corridor-like”  same frame. If registration is successful, a loop has

forward facing trajectories. At the time of writing we believe been closed to the older inactive model and the entire
our real-time approach to be the rst of its kind to; (i) use  model is non-rigidly deformed into place to re ect this
photometric and geometric frame-to-model predictive tracking  yegistration. The inactive portion of the map which
in a fused surfel-based dense map; (ii) perform dense model-  cayused this loop closure is then reactivated to allow
to-model local surface loop closures with a non-rigid space

deformation and (iii) utilise a predicted surface appearancesuch as the Microsoft Kinect or ASUS Xtion Pro Live.



tracking and surface fusion (including surfel culling) tacaptured by the camera with the surfel-splatted predicted

take place between the registered areas of the map. depth map and colour image of the active model from the
4) For global loop closure, add predicted views of thprevious pose estimate. All camera poses are represented with

scene to a randomised fern encoding database [6]. Eaclransformation matrix where:

frame, attempt to nd a matching predicted view via this R, t

database. If a match is detected, register the views to- Py = 00 0 1 2 SEs; )

gether and check if the registration is globally consistent

with the model's geometry. If so, re ect this registrationwith rotationR, 2 SO; and translatiort, 2 R>.

in the map with a non-rigid deformation, bringing theA_ Geometric Pose Estimation

surface into global alignment. ) _
. . . o . . Between the current live depth mﬁi and the predicted
Figure 2 provides a visualisation of the outlined main steps

. . . a&tive model depth map from the last frarﬁé 1 We aim to
of our approach. In the following section we describe our fuse : L
nd the motion parameters that minimise the cost over the

map representation and method for predictive tracking. point-to-plane error between 3D back-projected vertices:
Ill. FUSED PREDICTED TRACKING

Our scene representation is an unordered list of surfels
M (similar to the representation used by Kelketr al. [9]),
where each surfeVl ® has the following attributes; a positionwherev{ is the back-projection of thi-th vertex inDy, v¥
p 2 R%, normaln 2 R®, colourc 2 N2, weightw 2 R, andn® are the corresponding vertex and normal represented in
radiusr 2 R, initialisation timestampt, and last updated the previous camera coordinate frame (at time step 1). T
timestampt. The radius of each surfel is intended to represeist the current estimate of the transformation from the previous
the local surface area around a given point while minimisirgamera pose to the current one and (é\j(pis the matrix
visible holes, computed as done by Salas-Morehal. [17]. exponential that maps a member of the Lie algessato
Our system follows the same rules as described by Kellermember of the corresponding Lie groGE;. Vertices are
et al. for performing surfel initialisation and depth mapassociated using projective data association [15].
fusion (where surfel colourg follow the same moving average oy oo oic Pose Estimation
scheme), however when using the map for pose estimation our ] ) )
approach differs in two ways; (i) instead of only predicting B_etween the current live colour |magé and the pr§d|cted
a depth map via splatted rendering for geometric frame-tg¢tive model colour from the Ias.t.fre.lméa 1 we aim to
model tracking, we additionally predict a full colour splatted?d the motion parameters that minimise the cost over the
rendering of the model surfels to perform photometric fram@hotometric error (intensity difference) between pixels:
to-model tracking; (ii) we de ne a time window threshold

X 2
Eip = v exp(MTve n*; )
k

X
which dividesM into surfels which areactive andinactive — E,g, = l(u;@) | (Kexp(M)Tp (u;D)); & 1 ;
Only surfels which are marked as active model surfels are used u2 3)
for camera pose estimation and depth map fusion. A surfe . . .
P b P ,ﬂere as abové is the current estimate of the transformation

was last updated.€. had a raw depth measurement associat i$m :_he pr;zwouds game_rta pose tq thebctL:Ar/rent %ne. l:lote theg[
with it for fusion) is greater than,. In the following, we gquations = an omit conversion between s-vectors an

describe our method for joint photometric and geometric pogﬂée:tr. 7.0 r?Spond.'tT% h?mogen(le_o_ttjs Aff—vetct(t).rs (as needed for
estimation from a splatted surfel prediction. multiplications withT) for simplicity of notation.

We de ne the image space domain as N%, where C. Joint Optimisation
an RGB-D frame is composed of a depth m@apof depth
pixels d : ! R and a colour imageC of colour pixels
c: ! N3 We also compute a normal map for every Etrack = Eicp + WignErgn; 4)
depth map as necessary using central difference. We de
the 3D back-projection of a pointi 2 given a depth
map D asp(u;D) = K lud(u), whereK is the camera
intrinsics matrix andu the homogeneous form of. We also
specify the perspective projection of a 3D pgint [x;y; z]”
(represented in camera frapfec) asu = (Kp ), where argmin k3 + rkj; 5)

(p) = (x=z;y=2)" denotes the dehomogenisation operation.

The intensity value of a pixell 2  given a colour image to yield an improved camera transformation estimate:

C with colour c(u) = [cl;c_,z;%r is de ne_d asl (u;C_t) = T°=exp(A)T ©)
(¢, + ¢ + ¢c3)=3. For each input frame at timewe estimate
the global pose of the cameRy, (w.r.t. a global frameF ) = [ ] X : (7)
by registering the current live depth map and colour image 0000

in M is declared as inactive when the time since that sur%}

At this point we wish to minimise the joint cost function:

wfth Wigp = 0:1in line with related work [8, 25]. For this we
use the Gauss-Newton non-linear least-squares method with
a three level coarse-to- ne pyramid scheme. To solve each
iteration we calculate the least-squares solution:



with =[! x"],!:2 R® andx 2 R®. |:|
Blocks of the combined measurement Jacoldiand resid- 0 "
ual r can be populated (while being weighted according to
W) and solved with a highly parallel tree reduction in
CUDA to produce & 6 system of normal equations which is
then solved on the CPU by Cholesky decomposition to yield
The outcome of this process is an up to date camera pose
estimateP; = TP, ; which brings the live camera daD{'
and d into strong alignment with the current active model
(and hence ready for fusion with the active surfeldvin).

Mapping left to right Time scale

Mapping right to left Deformation graph

IV. DEFORMATION GRAPH

In order to ensure local and global surface consistency in
the map we re ect successful surface loop closures in the set
of surfelsM . This is carried out by non-rigidly deforming
all surfels (both active and inactive) according to surface
constraints provided by either of the loop closure methods later
described in Sections V and VI. We adopt a space deformation
approach based on the embedded deformation technique of
Sumneret al. [23].

A deformation graph is composed of a set of nodes and
edges distributed throughout the model to be deformed. Each
nodeG' has a timestami& , a positionG; 2 R® and set

of neighbouring nodesl (G"). The neighbours of each node_. ) . -
make up the (directed) edges of the graph. A graph is c Fig. 3: Temporal deformation graph connectivity before loop

on: .
nected up to a neighbour coukitsuch than: jN (G)j = k. osure. The top half shows a mapping sequence where the

We usek = 4 in all of our experiments. Each node alsocamera rst maps left to right over a desk area and then back
¥ T exp ' ._across the same area. Given the windowed fusion process it
stores an af ne transformation in the form of3a 3 matrix

G and a3 1vectorG', initialised by default to the identity appears that the map and hence deformation graph is tangled

and(0: 0;0)° respectively. When deforming a surface, e up in itself between passes. However, observing the bottom

P ‘ ¢ h nod fimised i alf of the gure where the vertical dimension has been
and G parameters of each node are optimised according Jg; cially stretched by the initialisation time® ; andG_ of
surface constraints, which we later describe in Section IV- 0 0

) €ach surfel and graph node respectively, it is clear that multiple
In order to apply a deformation graph to the surface, eaﬁﬁsses of the map are disjoint and free to be aligned.

surfel M ° identi es a set of in uencing nodes in the graph

| (M °;G). The deformed position of a surfel is given by:

oy,

Time stretched map Time stretched graph

N

MS = (M®)= WM M3 G+ &+ d initialise a new deformation graph each frame with node po-

n2l (M *;G) @
while the deformed normal of a surfel is given by:

X
M7 = W' (M *)Gh

n2l (M °;G)

UMy ©)
wherew" (M ®) is a scalar representing the in uence nogk
has on surfeM °, summing to a total of 1 when = k:

W' M%) =1 Mj Gy ,=tna )™ (10)

sitions set to surfel position§] = M ) and node timestamps
set to surfel initialisation timestamp§] = M ) sampled
from M using systematic sampling such th&j jM;j

Note that this sampling is uniformly distributed over the
population, causing the spatial density @fto mirror that
of M. The setG is also ordered oven on d‘o such that
8n;G) G{ %G %:::;G). To compute the connectivity
of the graph we use this initialisation time ordering Gf
to connect nodes sequentially up to the neighbour cdynt
dening N (G") = fG" -G 2::::G" #g. This method is

Heredy., is the Euclidean distance to ther 1-nearest node computationally ef cient (compared to spatial approaches [23,
of M °. In the following we describe our method for sampling) but more importantly prevents temporally uncorrelated
the deformation grapls from the set of surfel®! along with areas of the surface from in uencing each othee.(active

our method for determining graph connectivity.

A. Construction

and inactive areas), as shown in Figure 3. Note that in the
K is less than zero or greater thaBj

case wheren 3
we connect the graph either forwards or backwards from

Each frame a new deformation graph for the set of surfelse bound. For exampleN (G) = fG';G%:::;G'g and
M is constructed, since it is computationally cheap ard (G®) = fG/® 1.d® 2;:::;3% *g. Next we describe
simpler than incrementally modifying an existing one. Whow to apply the deformation graph to the map of surfels.



B. Application position QF 2 R® which should reach the destination upon

In order to apply the deformation graph after optimisatioﬂeformagon- Theptimestamps of each point are also stqred in
(detailed in the next section) to update the map, the set @f asQg, and Qs, respectively. We use four cost functions
nodes which in uence each surféll S must be determined. ©ver the deformation graph akin to those de ned by Sumner
In tune with the method in the previous section a tempor8f @ [23]. The rst maximises rigidity in the deformation:

association is chosen, similar to the approach taken by Whelan X L >
et al. [25]. The algorithm which implements(M °; G) and Erot = G &G | F ; (11)
applies the deformation grapB® to a given surfel is listed !
in Algorithm 1. When each surfel is deformed, the full set d#sing the Frobenius-norm. The second is a regularisation term
deformation nodes is searched for the node which is closestfidt ensures a smooth deformation across the graph:
time. The solution to thig ;-norm minimisation is actually a N

. s 2
binary search over the s& as it is already ordered. From Ereg = Gy (G G 'g)+ Gg +G (G +a)
here, other nodes nearby in time are collected andkthe I nan (@) 2
nearest nodes (in the Euclidean distance sense) are selected 12)
asl (M °; G). Finally the weights for each node are compute@he third is a constraint term that minimises the error on the
as in Equation 10 and the transformations from Equationss8t of position constraint®, where (Q?Y) is the result of
and 9 are applied. All other attributes of the updated surfepplying Equation 8 taQ?®:

M'S are copied fromM 3. X
P Een =k (Q)) Q BK (13)

p

Algorithm 1: Deformation Graph Application

Input: M ° surfel to be deformed
G set of deformation nodes
number of nodes to explore

Note that in order to apply Equation 8 @ we must compute

| (Q%; G) and subsequenthy" (QF). For this we use the same
algorithm as described in Algorithm 1 to deform the position
only, usingQf (inclusive of timestamm?%, ) in place ofM °.

. S
Output: M ® deformed surfel In practiceQS, will always be the timestamp of a surfel within
do . o the active model WhiIngt will be the timestamp of a surfel
/I' Find closest node in time within the inactive model. The temporal parameterisation of
c argmin M fo G tlo L the surface we are using allows multiple passes of the same
i i : . .
/I Gather set of temporally nearby nodes surface to be non-rigidly deformed into alignment allowing

| - mapping to continue and new data fusion into revisited areas
" _ _ of the map. Given this, the nal cost function “pins” the
for i =2to =2do . . . .
L1752 o4 inactive area of the model in place ensuring that we are
always deforming the active area of the model into the inactive

H H . . S
sort_by_euclidean distance(l ; G;M ) coordinate system:

/I Take closest k as influencing nodes X )

MG | %K1 Epin = Kk (Q) Q fK; (14)
/I Compute weights p

h 0 . K As above we use Algorithm 1 to compgt({QQ), using Q}
Omax My Gy , in place ofM °. The nal total cost function is de ned as:

forn21 (M*®;G) do

LWH(MS) (1 Mj Gg ,=tna)’ _ e
h  h+w'(M?®) With Wit = 1, Weq = 10 and wg,, = 100 (in line with

related work [23, 1, 25]) we minimise this total cost with

respect toG; and G' over all n using the iterative Gauss-

Newton algorithm. The Jacobian matrix in this problem is

sparse and as a result we use sparse Cholesky factorisation

to efciently solve the system on the CPU. From here the

deformation graplG is uploaded to the GPU for application

to the entire surfel map as described in Section IV-B.

Edef = Wiot Erot + Wreg Ereg + Weon Econ + Weon Epin (15)

I Aplgly transformations

Ns w" (M %) n s n n n
P_PnZI(MS;G) h RMp Gg)t G+ G
s _ w (M>)a~n 1> s
n= n2 (M%;6) h Gr M n

M
N
M

C. Optimisation
Given a set of surface correspondeneglater expanded V. LoCAL LOOPCLOSURE

upon in Sections V and VI) the parameters of the deforma-To ensure local surface consistency throughout the map our

tion graph can be optimised to re ect a surface registratiafystem closes many small loops with the existing map as those

in the surfel modelM . An elementQ” 2 Q is a tuple areas are revisited. As shown in Figure 2, we fuse into the

Q" = (Qg:;Q8; Qg ;Qs) which contains a pair of points active area of the model while gradually labeling surfels that

representing a destination positi®yf 2 R® and a source have not been seen in a period of timegas inactive. The



inactive area of the map is not used for live frame trackingf the active model drifting too far from the inactive model for
and fusion until a loop is closed between the active modielcal alignment to converge, we resort to an appearance-based
and inactive model, at which point the matched inactive argéobal loop closure method to bootstrap a surface deformation
becomes active again. This has the advantage of continuadsch realigns the active model with the underlying inactive
frame-to-model tracking and also model-to-model trackingodel for tight global loop closure and surface global consis-
which provides viewpoint-invariant local loop closures. tency. This is described in the following section.

We divide the set of surfels in our mdyp into two disjoint
sets and , such that given the current frame timestatnipr VI. GLOBAL LOOPCLOSURE

each surfel inthe mam *2  ift M {< andM°®2 We utilise the randomised fern encoding approach for
ift M { ,making the active setand the inactive set. appearance-based place recognition [6]. Ferns encode an RGB-
In each frame if a global loop closure has not been detectedimage as a string of codes made up of the values of
(described in the following section), we attempt to comput§inary tests on each of the RGB-D channels in a set of xed
a match between and . This is done by registering thepixel locations. The approach presented by Glockeral.
predicted surface renderings ofand from the latest pose includes an automatic method for fern database management
estimateP , denotedD{, G andDy, G respectively. This pair that avoids adding redundant views and non-discriminative
of model views is registered together using the same meth@ames. This technique has been demonstrated to perform very
as described in Section Ill. The output of this process will beliably in terms of computational performance and viewpoint
a relative transformation matrid 2 SE; from  to  which  recognition. Our implementation of randomised fern encoding
brings the two predicted surface renderings into alignment.is identical to that of Glockeet al. with the difference that

In order to check the quality of this registration and decid@stead of encoding and matching against raw RGB-D frames,
whether or not to carry out a deformation, we inspect the ngle use predicted views of the surface map once they are
condition of the Gauss-Newton optimisation used to align thgigned and fused with the live camera view. Parts of the
two views. The residual cof o from Equation 4 must be predicted views which are devoid of any mapped surface are
suf ciently small, while the number of inlier measurementsiied in using the live depth and colour information from the
used must be above a minimum threshold. We also inspegfrent frame.

the eigenvalues of the covariance of the system (approximategtach frame we maintain a fern encoded frame dataEase

by the Hessian as = (J7J) Y by; i( ) < fori = using the same process as originally specied by Glocker
f1;:::;69, where ;( ) is thei-th eigenvalue of and a et al. for fern encoding, frame harvesting and identi cation
suf ciently conservative threshold. of matching fern encodings [6]. As they suggest, we use a

If a high quality alignment has been achieved, we produg@wnsampled frame size & 60. Each elemenE 2 E
a set of surface constrain€@ which are fed into the defor- contains a number of attributes; a fern encoding stihga
mation graph optimisation described in Section IV to aligaepth mapEs , a colour im,ageE'o a source camera po&p
the surfels in  with those in . To do this we also require and an initialisation timeE. At the end of each frame we
the initialisation timestamps , of each surfel splat used toadd 32 and& (predicted active model depth and colour after
renderD;. These are rendered & and are necessary tofusion lled in with D{ and d) to E if necessary. We also
correctly constrain the deformation between the active modglery this database immediate after the initial frame-to-model
and inactive model. We uniformly sample a set of pixetacking step to determine if there is a global loop closure
coordinatesU to compute the se@. For each pixel required. If a matching framg' is found we perform a number
u 2 U we populate a constraint: of steps to potentially globally align the surfel map.
Q° = (HP )p(u: D3): P,p(u: D?): T, (u): 1): (16) Firstly, we attempt to al?gr} the matched_ frame vyith thg
)P D) FepUs D)y Te () b current model prediction. Similar to the previous section, this
After the deformation has occurred a new up to date caméyolves utilising the registration process outlined in Section
pose is resolved a®, = HP,. At this point the set of Ill to bring Df and &' into alignment withEp and Ec,
surfels which were part of the alignment are reactivated tacluding inspection of the nal condition of the optimisation.
allow live camera tracking and fusion with the existing activéf successful, a relative transformation matfix2 SE; which
surfels. An up to date prediction of the active model dep#rings the current model prediction into alignment with the
must be rendered to re ect the deformation for the depth te®@tching frame is resolved. From here, as in the previous

for inactive surfels, computed d3%. For each surfeM °: section, we populate a set of surface constra@t® provide
_ s as input to the deformation, where eaahis a randomly
, <t it (KP, 1M %) 2 . L sampled fern pixel location (lifted into full image resolution):
Me=. _ and(KP *M3), . DP( (KP M p)); | |
My else. an Q"= ((HEp)p(u;D?) Pip(u;DY); ) (18)

The process described in this section brings active arddste QE which incorporates the difference in the estimated
of the model into strong alignment with inactive areas of thgoint position given by the alignment and the known actual
model to achieve tight local surface loop closures. In the evegibbal point position given b, . From here, the deformation



System frl/desk | fr2/xyz | fr3/ofce | fr3/nst 0.1m

DVO SLAM 0.021m | 0.018m | 0.035m | 0.018m
RGB-D SLAM 0.023m | 0.008m | 0.032m | 0.017m
MRSMap 0.043m | 0.020m | 0.042m | 2.018m
Kintinuous 0.037m | 0.029m | 0.030m | 0.031m DVO SLAM RGB-D SLAM MRSMap

Frame-to-model| 0.022m | 0.014m | 0.025m | 0.027m
ElasticFusion 0.020m | 0.011m| 0.017m | 0.016m

TABLE I: Comparison of ATE RMSE on the evaluated real |
WOI’|d datasets Of Sturrat al. [22] Om Kintinuous Frame-to-model ElasticFusion

Fig. 4: Orthogonal frontal view heat maps showing reconstruc-

cost from Equations 11-15 is computed and evaluated 48N €rror on the ki0 dataset. Points more than 0.1m from
determine if the proposed deformation is consistent with tig&ound truth have been removed for visualisation purposes.

map's geometry. We are less likely to accept unreliable fern

matching triggered deformations as they operate on a much g{’/sge;“LAM . '1<504m . gtzlgm . '1<t921m 5 ll<tf>32m
coarser scale than the Io'cal 'Ioo'p closure mat'chefcl,t1 RGB-D SLAM | 0.026m | 0.008m | 0.018m | 0.433m
is too small _the _deformat!on is likely not required and_the MRSMap 0.204m | 0.228m | 0.189m | 1.090m
loop closure is rejected.é. it should be detected and applied | Kintinuous 0.072m | 0.005m | 0.010m | 0.355m

as a local loop closure). Otherwise, the deformation graph| Frame-to-model| 0.497m | 0.009m | 0.020m | 0.243m
is optimised and the nal state of the Gauss-Newton system| ElasticFusion | 0.009m | 0.009m | 0.014m | 0.106m

is analysed to determine if it should be applied. If aftefaBLE |1 Comparison of ATE RMSE on the evaluated
optimisation Eo, is suf ciently small while over allEqet  synthetic datasets of Hane al. [7].
is also small, the loop closure is accepted and the deformation

graph G is applied to the entire set of surfeM . At this

point the current pose estimate is also updat(_eétt(; H E'ID _rely on a pose graph optimisation backend. Interestingly our
Unlike in the previous section the set of active and inactie; me-to-model only results are also comparable in perfor-
surfels is not revised at this point. This is for two main reasongiance, whereas a uniform increase in accuracy is achieved
(i) correct global loop closures bring the active and inacti\ghen active to inactive model deformations are used, proving
regions of map into close enough alignment to trigger a 10Cgleir ef cacy in trajectory estimation. Only on fr3/nst does
loop closure on the next frame and (i) this allows the map giohal 1oop closure occur. Enabling local loops alone on

to recover from potentially incorrect global loop closures. Wgyis gataset results in an error of 0.022m, while only enabling
also have the option of relying on the fern encoding databagc,@bm loops results in an error of 0.023m.

for global relocalisation if camera tracking ever fails (however

this was not encountered in any evaluated datasets). B. Surface Estimation

VIl. EVALUATION We evaluate the surface reconstruction results of our ap-

We evaluate the performance of our system both quantiﬁa{-oaCh on the ICL-NUIM dataset of Handt al. [7]. This

. I . : S enchmark provides ground truth poses for a camera moved
tively and qualitatively in terms of trajectory estimation, sur;

. : through a synthetic environment as well as a ground truth 3D

face reconstruction accuracy and computational performance. . .
model which can be used to evaluate surface reconstruction

A. Trajectory Estimation accuracy. We evaluate our approach on all four trajectories in

e living room scene (including synthetic noise) providing

To evaluate the trajectory estimation performance of our a%rface reconstruction accuracy results in comparison to the
roach we test our system on the RGB-D benchmark of Stu . . . .
P y me SLAM systems listed in Section VII-A. We also include

et al.[22]. This benchmark provides synchronised ground trutif! T
poses for an RGB-D sensor moved through a scene, captuV ctory estimation results for each dataset. Tables Il and Ill
with a highly precise motion capture system. In Table | we
compare our system to four other state-of-the-art RGB-D [System KtO Ktl K2 K3
based SLAM systems; DVO SLAM [10], RGB-D SLAM [5], DVO SLAM 0.032m | 0.061m | 0.119m | 0.053m
MRSMap [21] and Kintinuous [25]. We also provide bench- | RGB-D SLAM | 0.044m | 0.032m | 0.031m | 0.167m
mark scores for our system if all deformations are disabled| MRSMap 0.061m | 0.140m | 0.098m | 0.248m
. Kintinuous 0.011m | 0.008m | 0.009m | 0.150m
an(_j only frame-to-model tracking is used. We use the absol_ute Frame-to-modell 0.098m | 0.007m | 0.011m | 0.107m
trajectory (ATE) root-mean-square error metric (RMSE) in EfasticFusion | 0.007m | 0.007m | 0.008m | 0.028m
our comparison, which measures the root-mean-square of the . i
Euclidean distances between all estimated camera poses HhgLE Ill: Comparison of surface reconstruction accuracy
the ground truth poses associated by timestamp [22]. Théggults on the evaluated synthetic datasets of Hama [7].
results show that our trajectory estimation performance is &antities shown are the mean distances from each point to

par with or better than existing state-of-the-art systems tHA€¢ nearest surface in the ground truth 3D model.




@ (i) (iii)

Fig. 5: Qualitative datasets; (i) A comprehensive scan of a

copy room, (”). A loopy large scan of a computer lab; ('")Fig. 6: Frame time vs. number of surfels on the Hotel dataset.
A comprehensive scan of a twin bed hotel room (note that
the actual room is not rectilinear). To view small details we

recommenq e|Fher using the digital zoom function in a PDL'J:nderstand the capabilities of our appro%ch
reader or viewing of our accompanying vidéos

C. Computational Performance

Name (Fig.) | Copy (5i) | Lab (5ii) | Hotel (5iii)) | Ofce (1)

Frames 5490 6533 —795 5000 Tq analyse the computational performancg of Fhe system we
Surfels a4 16 | 35 10 41 10° 48 10° provide a plot of the average frame processing time across the
Graph nodes| 351 282 328 386 Hotel sequence. The test platform was a desktop PC with an
Fern frames 582 651 325 583 Intel Core i7-4930K CPU at 3.4GHz, 32GB of RAM and an
Local loops 15 13 11 17 nVidia GeForce GTX 780 Ti GPU with 3GB of memory. As
Global loops 1 4 1 0 shown in Figure 6 the execution time of the system increases
TABLE IV: Statistics on qualitative datasets. with the number of surfels in the map, with an overall average

of 31ms per frame scaling to a peak average of 45ms implying
a worst case processing frequency of 22Hz. This is well
. _ o within the widely accepted minimum frequencies for fused
summarise our trajectory estimation a.nd Surfacle.reconstructt%hse SLAM a|gorithms [24' 17, 2, 9], and as shown in our
results. Note on ktl the camera never revisits previousiyalitative results more than adequate for real-time operation.
mapped portions of the map, making the frame-to-model
and ElasticFusion results identical. Additionally, only the kt3 VIIl. CONCLUSION
sequence triggers a global loop closure in our approach. This
yields a local loop only ATE RMSE result of 0.234m and a Ve have presented a novel approach to the problem of
global loop only ATE RMSE result of 0.236m. On surfacglense visual SLAM that performs time windowed surfel-
reconstruction, local loops only scores 0.099m and glob%‘sed dense data fusion in combination with frame-to-model
loops only scores 0.103m. These results show that again §@Cking and non-rigid deformation. Our main contribution in
trajectory estimation performance is on par with or better thdiiS Paper is to show that by incorporating many small local
existing approaches. It is also shown that our surface recépodel-to-model loop closures in conjunction with larger scale
struction results are superior to all other systems. Figuredlpbal loop closures we are able to stay close to the mode of
shows the reconstruction error of all evaluated systems on Kige distribution of the map and produce globally consistent

o reconstructions in real-time without the use of pose graph
We also present a number of qualitative results on dataset b grap

: . oftimisation or post-processing steps. In our evaluation we
captured in a handheld manner demonstrating system versatjl- post-p 9 P

ity. Statistics for each dataset are listed in Table IV. The Cop? ow that the use qf frequent. non-rigid map deformations
: : ) improve both the trajectory estimate of the camera and the
dataset contains a comprehensive scan of a photocopying roQ . .
i surface reconstruction quality. We also demonstrate the effec-
with many local loop closures and a global loop closure at one : . :
: . . tiveness of our approach in long scale occasionally looping
point to resolve global consistency. This dataset was made

available courtesy of Zhou and Koltun [26]. The Lab datascgmera motions and more loopy comprehensive room scanning

. : frajectories. In future work we wish to address the problem of
contains a very loopy trajectory around a large of ce envi-

i map scalability beyond whole rooms and also investigate the
ronment with many global and local loop closures. The Hotelre?blem of dense globally consistent SLAM &1

dataset follows a comprehensive scan of a non-rectilinear th
room with many local loop closures and a single global loop
closure to resolve nal model consistency. Finally the Of ce
dataset contains a comprehensive scan of a complete of ceResearch presented in this paper has been supported by
with many local loop closures avoiding the need for any glob&lyson Technology Ltd.

loop closures for model consistency. We recommend viewing

of our accompanying videos to more clearly visualise and?https://youtu.be/XySrhZpODYs, https://youtu.be/-dauPjEU
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